Hostname: page-component-848d4c4894-89wxm Total loading time: 0 Render date: 2024-07-05T20:02:44.487Z Has data issue: false hasContentIssue false

Improved varistor nonlinearity via sintering and acceptor impurity doping

Published online by Cambridge University Press:  15 September 2000

Y. J. Wang*
Affiliation:
Physics Department of Shandong University, Jinan Shandong 250100, P.R. China
J. F. Wang
Affiliation:
Physics Department of Shandong University, Jinan Shandong 250100, P.R. China
C. P. Li
Affiliation:
Physics Department of Shandong University, Jinan Shandong 250100, P.R. China
H. C. Chen
Affiliation:
Physics Department of Shandong University, Jinan Shandong 250100, P.R. China
W. B. Su
Affiliation:
Physics Department of Shandong University, Jinan Shandong 250100, P.R. China
W. L. Zhong
Affiliation:
Physics Department of Shandong University, Jinan Shandong 250100, P.R. China
P. L. Zhang
Affiliation:
Physics Department of Shandong University, Jinan Shandong 250100, P.R. China
L. Y. Zhao
Affiliation:
The Thunder Defense Center of Shandong, Jinan Shandong 250100, P.R. China
Get access

Abstract

A new varistor system of SnO2-Bi2O3-Nb2O5 was reported in this paper. The electrical field-current density characteristics of this system were investigated by doping different amounts of Bi2O3 and sintering the samples at various temperatures. It is found that adding 0.75 mol% Bi2O3 to Nb-doped SnO2 ceramic resulted in maximum nonlinear coefficient and breakdown voltage with α = 14 and E0.5 = 19 525 V/cm. To improve the density as well as the nonlinearity of this system, different amounts of Co2O3 were added. The optimal conditions for the best nonlinearity were 1300 °C with 0.03 mol% Co2O3 addition. Deviation from this doping content, toward either higher or lower Co2O3 content, causes the deterioration of I−V characteristics. It can be concluded that the incorporation of cobalt oxides into SnO2-based varistors improves the nonlinearity in the low and intermediate current density regions because of the increased barrier height $(\Phi_{\rm B})$. The experimental results were explained with the defect barrier model for SnO2-based varistors.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Castro, M.S. et al., J. Am. Ceram. Soc. 73, 800 (1992). CrossRef
Pianaro, S.A. et al., J. Mater. Sci. 30, 133 (1995). CrossRef
Carlson, W.G., Gupta, T.K., J. Appl. Phys. 53, 5746 (1982). CrossRef
Gupta, T.K. et al., J. Am. Ceram. Soc. 73, 1817 (1990). CrossRef
T.K. Gupta, influence of microstructure and chemistry on the electrical characteristics of ZnO varistors, in tailoring multiphase and composite ceramics, edited by R.E. Tresslor (Ponum, New York, 1986), pp. 493-507.
T.K. Gupta, 60Hz AC characteristic of ZnO varistors below breakdown voltage, in Proceedings of 1984 conference on electrical insulation and dielectric phenomena, IEEE Electrical Ins. Soc., 1984. IEEE service center.pecataway, NJ., pp. 437-447.
Pianaro, S.A., Bueno, P.R., Olivi, P., J. Mater. Sci. Lett. 14, 692 (1995). CrossRef
Wong, J., J. Appl. Phys. 47, 4971 (1976). CrossRef
Zuca, S. et al., J. Mater. Sci. 26, 1673 (1991). CrossRef
Pianaro, S.A. et al., J. Mater. Sci. Lett. 16, 634 (1997). CrossRef
Cerri, J.A. et al., J. Am. Ceram. Soc. 79, 799 (1996). CrossRef
Wang, J., J. Appl. Phys. 51, 4453 (1980). CrossRef
Shirm, Y. et al., J. Appl. Phys. 64, 3994 (1988).
Olsson, E., Dunlop, G.L., J. Appl. Phys. 60, 3666 (1989). CrossRef
Morris, W.G. et al., J. Vac. Technol. 13, 926 (1976). CrossRef
Emtage, P.R. et al., J. Appl. Phys. 48, 4372 (1977). CrossRef
Mahan, G.D., Lecvinson, L.M., J. Appl. Phys. 50, 2799 (1979). CrossRef
Wong, J., J. Appl. Phys. 46, 1653 (1975). CrossRef
Eda, K., IEEE Electrical Ins. Mag. 5, 28 (1989). CrossRef
Gupta, T.K., J. Mater. Sci. 20, 3487 (1985). CrossRef
Antunes, A.C. et al., Mater. Sci. Lett. 17, 577 (1998). CrossRef
Kim, E.D., Kim, C.H., J. Appl. Phys. 58, 3231 (1985). CrossRef