Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-11T10:20:28.609Z Has data issue: false hasContentIssue false

Impact of palladium substitution for copper in Bi2CuO4 synthesized via sol-gel method

Published online by Cambridge University Press:  23 December 2010

E. Chater*
Affiliation:
Laboratory of Physical Chemistry of Materials: Catalysis and Environment, Faculty of Science, Department of Chemistry, University of Science and Technology of Oran, BP 1505, 31000 El-Mnaouer, Oran, Algeria
M. Sellami
Affiliation:
Laboratory of Physical Chemistry of Materials: Catalysis and Environment, Faculty of Science, Department of Chemistry, University of Science and Technology of Oran, BP 1505, 31000 El-Mnaouer, Oran, Algeria
N. Bettahar
Affiliation:
Laboratory of Physical Chemistry of Materials: Catalysis and Environment, Faculty of Science, Department of Chemistry, University of Science and Technology of Oran, BP 1505, 31000 El-Mnaouer, Oran, Algeria
Get access

Abstract

An extensive new solid solution was synthesized by substitution of Pd+2 for Cu+2 in Bi2CuO4 compound [J.-C. Boivin et al., C.R. Hebd. Seances Acad. Sci., Ser. C 276, 1105 (1973)]. Polycrystalline ceramic powder with formula Bi2Cu$_{1-x}$PdxO4 were prepared by sol-gel method using (Bi, Cu, Pd) nitrates and pure citric acid. X-ray patterns show a single phase with tetragonal symmetry and space group P4/ncc (No. 130). In cases, the tetragonal cell c parameter and therefore the metal-metal distance (dM-M = c/2) increases linearly with increasing palladium concentration. Electrical conductivity measurements show that the resistivity decreases regularly with pd2+ substitution. It is possible to obtain materials with an ambient temperature conductivity ranging from 10-6 to 10-3 S cm-1.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boivin, J.-C. et al., C.R. Hebd. Seances Acad. Sci., Ser. C 276, 1105 (1973)
Bettahar, N., Gonflant, P., Abraham, F., J. Alloys Compd. 188, 211 (1992) CrossRef
Mansouri, M., Satre, P., Breandon, C., Roubin, M., Sebaoun, A., Ann. Chim. Sci. Mater. 18, 537 (1993)
N. Said, Thèse de Doctorat, Université de Lille, 1996
N. Bettahar, Thèse de Doctorat Es-Sciences, USTO, Oran, 1996
G.D. Gu, J.S. Wen, Z.J. Xu, G.Y. Xu, J.M. Tranquada, Q. Li, A.R. Moodenbaugh, K. Yamada, American Physical Society, APS March Meeting (2007)
J. Kim, D.S. Ellis, H. Zhang, J.P. Hill, F.C. Chou, T. Gog, D. Casa, Y.-J. Kim, arXiv:0811.1379 (2008)
Janson, O., Rosner, H., Physica C 460-462, 458 (2007) CrossRef
J.C. Bauer, Ph.D. thesis, Louisiana Tech. University, 2009
Miljak, M., Herak, M., Dhalenne, G., Revcolevschi, A., Europhys. Lett. 70, 369 (2005) CrossRef
Hong, Y.S., Ho, C.M., Hsu, H.Y., Liu, C.T., J. Magn. Magn. Mater. 279, 401 (2004) CrossRef
Kim, C.Y., Sekino, T., Nirhara, K., J. Am. Ceram. Soc. 86, 1464 (2003) CrossRef
Shannon, R.D., Acta Cryst. A32, 751 (1976) CrossRef
J.G. Bednorz, K.A. Miller (eds.), Earlier and recent aspects of superconductivity, volume 90 of Springer Series in Solid State Sciences (Springer-Verlag, Berlin, 1990)