Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-18T05:04:29.655Z Has data issue: false hasContentIssue false

Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy*

Published online by Cambridge University Press:  15 March 1999

G. Wurtz
Affiliation:
Laboratoire de Nanotechnologie et d'Instrumentation Optique, Université de Technologie de Troyes, 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex, France
R. Bachelot*
Affiliation:
Laboratoire de Nanotechnologie et d'Instrumentation Optique, Université de Technologie de Troyes, 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex, France
P. Royer
Affiliation:
Laboratoire de Nanotechnologie et d'Instrumentation Optique, Université de Technologie de Troyes, 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex, France
Get access

Abstract

We report the local study of an operating double hetero-junction GaAs/GaAlAs laser diode by apertureless Scanning Near-field Optical Microscopy (SNOM). This study allows the characterization of the spatial properties of the light emitted by the laser source. The optical probe used is a tungsten tip vibrating (at frequency f) perpendicularly to the emitting surface. Suitable experimental parameters permitting us to accede to near-field information have been defined. This has leaded to an experimental configuration in which the probe vibration amplitude is "optimal". A far-field detection at grazing angle is used and a second harmonic (at frequency 2f) lock-in detection is performed. This configuration has permitted us to obtain SNOM images in stimulated emission as well as in spontaneous emission. Above the threshold current, information concerning the emitted laser mode are obtained, whereas in spontaneous emission the SNOM images are linked to the index contrast of the laser diode front facet.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This paper was presented at the special CFMCP colloquium held at Strasbourg-Illkirch the July 1st-3rd, 1998.

References

Buratto, S.K. et al., J. Appl. Phys. 76, 7720 (1994). CrossRef
Ben-Ami, U. et al., Appl. Phys. Lett. 68, 2337 (1996). CrossRef
Ch. Lienau, A. Richter, T. Elsaesser, Appl. Phys. Lett. 69, 325 (1996). CrossRef
J.P. Fillard, Near-Field Optics and Nanoscopy (World Scientific, Singapore, 1996).
M.A. Paesler, P.J. Moyer, Near-field Optics (John Wiley & Sons Inc., New York, 1996).
Inouye, Y., Kawata, S., Opt. Lett. 19, 159 (1994). CrossRef
Bachelot, R., Gleyzes, P., Boccara, A.C., Opt. Lett. 20, 1924 (1995). CrossRef
Zenhausern, F., Martin, Y., Wickramasinghe, H.K., Science 269, 1083 (1995). CrossRef
Lahrech, A. et al., Opt. Lett. 21, 1315 (1996). CrossRef
H.C. Casey, M.B. Panish, Heterostructure lasers (Academic Press, 1978).
S.L. Chuang, Physics of optoelectronic devices (John Wiley & Sons Inc., New York, 1995).
E. Rosencher, B. Vinter, Optoélectronique (Masson, Paris, 1998).
Wurtz, G., Bachelot, R., Royer, P., Rev. Sci. Instr. 69, 1735 (1998). CrossRef
Madrazo, A. et al., J. Opt. Soc. Am. A 15, 109 (1998). CrossRef
Grafström, S. et al., J. Appl. Phys. 83, 3453 (1997). CrossRef
O. Bryngdahl, in Progress in Optics XI, edited by E. Wolf (North-Holland, 1973).