Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T01:08:02.374Z Has data issue: false hasContentIssue false

Fabrication of refractive microlens arrays by visible irradiation of acrylic monomers: influence of photonic parameters

Published online by Cambridge University Press:  15 January 2001

C. Croutxé-Barghorn*
Affiliation:
Département de Photochimie Générale, E.N.S.C. Mulhouse (UMR 7525) , 3 rue Alfred Werner, 68093 Mulhouse Cedex, France
O. Soppera
Affiliation:
Département de Photochimie Générale, E.N.S.C. Mulhouse (UMR 7525) , 3 rue Alfred Werner, 68093 Mulhouse Cedex, France
D. J. Lougnot
Affiliation:
Département de Photochimie Générale, E.N.S.C. Mulhouse (UMR 7525) , 3 rue Alfred Werner, 68093 Mulhouse Cedex, France
Get access

Abstract

The fabrication of refractive microlenses with self-developing photopolymers is reported. A spatially controlled illumination of the photosensitive layer induced an inhomogeneous photopolymerization involving formation of 3-D polymer network, mass-transport process of reactive species and bending of the surface. The process exhibited a completely self-processing character without any chemical post-treatment to reveal the relief. The lens arrays displayed diameters ranging from less than 100 μm to 1 mm and focal lengths from 100 μm to a few millimeters, depending on photonic, optical and physico-chemical parameters. The paper focuses on the importance of photonic parameters in the generation of microlens arrays and discusses the flexibility of this technique in the visible range.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Eisner, M., Schwider, J., Opt. Eng. 35, 2979 (1996). CrossRef
Pantelis, P., McCartney, D.J., Pure Appl. Opt. 3, 103 (1994). CrossRef
Haselback, S., Schreiber, H., Schwider, J., Streibl, N., Opt. Eng. 32, 1322 (1993). CrossRef
Lazare, S., Lopez, J., Turlet, J.M., Kufner, M., Kufner, S., Chavel, P., Appl. Opt. 35, 4471 (1996). CrossRef
Weber, L., Ehrfeld, W., Freimuth, H., Lacher, M., Lehr, H., Pech, B., Proc. SPIE 2879, 156 (1996). CrossRef
Weber, L., Ehrfeld, W., Kunstoffe Plast. Europe 89, 192 (1999).
Borrelli, N.F., Morse, D.L., Appl. Opt. 27, 476 (1988). CrossRef
Croutxé-Barghorn, C., Lougnot, D.J., Proc. SPIE 3417, 208 (1998). CrossRef
Monroe, B.M., Weed, G.C., Chem. Rev. 93, 435 (1993). CrossRef
Croutxé-Barghorn, C., Soppera, O., Simonin, L., Lougnot, D.J., Adv. Mat. Opt. Electron. 10, 25 (2000). 3.0.CO;2-I>CrossRef
Croutxé-Barghorn, C., Lougnot, D.J., Pure Appl. Opt. 5, 811 (1996). CrossRef
Croutxé-Barghorn, C., Lougnot, D.J., Proc. SPIE 2998, 222 (1997). CrossRef
J.P. Fouassier, Photoinitiation, Photopolymerization and Photocuring, Carl Hanser Verlag, Munich, 1995.
E. Selli, I.R. Bellobono, in Photopolymerization of Multifunctional monomers: Kinetic Aspects. In Radiation Curing in Polymer Science and Technology, edited by J.P. Fouassier, J.F. Rabek, Elsevier Applied Science, New York, 1993, Vol. III, pp. 1-32.
Carré, C., Lougnot, D.J., J. Phys. III France 3, 1445 (1993). CrossRef
C. Decker, in Photopolymerization of Multifunctional monomers: Kinetic Aspects. In Radiation Curing in Polymer Science and Technology, edited by J.P. Fouassier, J.F. Rabek, Elsevier Applied Science, New York, 1993, Vol. III, pp. 33-64.
Eisner, M., Schwider, J., Opt. Eng. 35, 2979 (1996). CrossRef