Skip to main content Accessibility help

Exfoliation of Mo6S x I9-x nanowires in common solvents

  • V. Nicolosi (a1), D. N. McCarthy (a1), D. Vengust (a2), D. Mihailovic (a2) (a3), W. J. Blau (a1) and J. N. Coleman (a1)...


We have demonstrated debundling of molydenym-sulphur-iodine nanowires simply by diluting nanowire dispersions in isopropanol. Using atomic-force-microscopy we observe the bundle diameter distribution to decrease dramatically with concentration. Detailed analysis of the data suggests the presence of an equilibrium bundle number density. The population of individual nanowires increases with decreasing concentration until almost half of all dispersed objects are individual nanowires at a concentration of 4 × 10−3 mg/ml. The partial concentration of individual nanowires peaks at a concentration of ~7 × 10−3 mg/ml. This debundling also occurs spontaneously without the input of sonic energy, suggesting thermodynamic solubility. The absorbance of the nanowire dispersions, measured in the visible region increases linearly with concentration indicating a concentration independent absorption coefficient. However, for the infra-red feature that has been associated with band edge transitions, the absorption coefficient increases with increasing concentration for both stoichiometries. This suggests that this transition may be quenched by the inter-nanowire interactions associated with bundling. Finally, nanowire re-aggregation can be induced by the addition of small quantities of non-solvents.


Corresponding author


Hide All
[1] Iijima, S., Nature 354, 56 (1991)
[2] Cadek, M., Coleman, J.N., Ryan, K.P. et al., Nano Letters 4, 353 (2004)
[3] Coleman, J.N., Khan, U., Blau, W.J. et al., Carbon 44, 1624 (2006)
[4] Dalton, A.B., Collins, S., Munoz, E. et al., Nature 423, 703 (2003)
[5] Zaric, S., Ostojic, G.N., Kono, J. et al., Science 304, 1129 (2004)
[6] Furtado, C.A., Kim, U.J., Gutierrez, H.R. et al., J. Am. Chem. Soc. 126, 6095 (2004)
[7] Giordani, S., Bergin, S.D., Nicolosi, V. et al., J. Phys. Chem. B 110, 15708 (2006)
[8] Landi, B.J., Ruf, H.J., Worman, J.J. et al., J. Phys. Chem. B 108, 17089 (2004)
[9] O'Connell, M.J., Bachilo, S.M., Huffman, C.B. et al., Science 297, 593 (2002)
[10] Coleman, J.N., Fleming, A., Maier, S. et al., J. Phys. Chem. B 108, 3446 (2004)
[11] Murphy, R., Coleman, J.N., Cadek, M. et al., J. Phys. Chem. B 106, 3087 (2002)
[12] Blake, R., Gun'ko, Y.K., Coleman, J. et al., J. Am. Chem. Soc. 126, 10226 (2004)
[13] Remskar, M., Mrzel, A., Skraba, Z. et al., Science 292, 479 (2001)
[14] Tenne, R., Margulis, L., Genut, M. et al., Nature 360, 444 (1992)
[15] Vrbanic, D., Remskar, M., Jesih, A. et al., Nanotechnology 15, 635 (2004)
[16] Nicolosi, V., Vrbanic, D., Mrzel, A. et al., J. Phys. Chem. B 109, 7124 (2005)
[17] Nicolosi, V., Vrbanic, D., Mrzel, A. et al., Chem. Phys. Lett. 401, 13 (2005)
[18] Kis, A., Mihailovic, D., Remskar, M. et al., Adv. Mater. 15, 733 (2003)
[19] Salvetat, J.P., Briggs, G.A.D., Bonard, J.M. et al., Phys. Rev. Lett. 82, 944 (1999)
[20] V. Nicolosi, P. Nellist, S. Sanvito et al., Adv. Mater. (in press)
[21] D.N. McCarthy, V. Nicolosi, D. Vengust et al., J. Appl. Phys. (in press)
[22] Meden, A., Kodre, A., Padeznik Gomilsek, J. et al., Nanotechnology 16, 1578 (2005)
[23] V. Nicolosi, P. Nellist, S. Sanvito et al., submitted to Advanced Materials
[24] A.M. Donald, A.H. Windle, Liquid Crystalline Polymers (Cambridge University Press, Cambridge, 1992)
[25] J.H. Hildebrand, J.M. Prausnitz, R.L. Scott, Regular and related solutions (Van Nostrand Reinhold Company, New York, 1970)
[26] S.F. Sun, Physical Chemistry of macromolecules (Wiley, New York, 2004)
[27] J. Brandrup, E.H. Immergut, Polymer handbook (John Wiley & Sons, 1989)



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed