Skip to main content Accessibility help
×
Home

Electrical study of DC positive corona discharge in dry and humid air containing carbon dioxide

  • S. Lachaud (a1) and J. F. Loiseau (a1)

Abstract

As most part of the industrial effluents contain carbon dioxide and water vapour, it is interesting to study from an electric point of view ‘basic’ gas mixtures including air and various amounts of these gases, in order to precise how the corona discharge inception takes place in such mixtures. In a DC point-to-plane reactor, distinct parameters are varied, such as discharge current, partial pressure of CO2, and relative humidity. Gap voltage and streamer frequency are experimentally measured as functions of the discharge current. Current waveforms are recorded in various gas mixtures and electrical conditions. DC and impulsional current components, as well as streamer frequency are also plotted as functions of the CO2 partial pressure for dry and water saturated mixtures. For dry or wet mixtures, 5% CO2 in volume appears to be the proportion allowing the establishment of a stable corona discharge with the lowest energy cost.

Copyright

Corresponding author

References

Hide All
[1] M. Popescu, J.M. Blanchard, J. Carré, Analyse et traitement physico-chimique des rejets atmosphériques industriels (Paris: Lavoisier/Tec & Doc, 1998)
[2] G. Larroche, M. Orfeuil, Les Plasmas dans l'Industrie (Avon (France): Electra/Dopee & Paris: Lavoisier, 1991)
[3] B.M. Penetrante, S.E. Schultheis, Non-Thermal Plasma Techniques for Pollution Control, NATO ASI Series G (Berlin: Springer-Verlag, 1993), Vol. 34
[4] E.M. Van Veldhuizen, Electrical discharges for environmental purposes - Fundamentals and applications (New-York: Nova Science Publishers, Inc., 2000)
[5] H. Raether, Electron avalanches and breakdown in gases (London: Butterworth, 1964)
[6] L.B. Loeb, Electrical coronas (Berkeley: University of California Press, 1965)
[7] E. Nasser, Fundamentals of gaseous ionization and plasma electronic (New-York: Wiley-Interscience, 1971)
[8] Yu.P. Raizer, Gas Discharge Physics (Berlin: Springer-Verlag, 1991)
[9] B. Held, Proc.11th Int. Conf. on Gas Discharges and their Applications, Tokyo (Japan), 1995, Vol. II, pp. 514-526
[10] A.E. Ercilbengoa, Étude expérimentale de régimes de décharge continue positive dans l'azote et l'air pour différentes pressions, Doctorate Thesis, Université de Pau et des Pays de l'Adour (France), 1999
[11] Lapeyre, R.M., Peyrous, R., Environ. Technol. Lett. 2, 29 (1981)
[12] Held, B., Peyrous, R., Czech. J. Phys. 49, 301 (1999)
[13] S. Lachaud, Décharge pointe-pan dans les mélanges gazeux correspondant aux effluents industriels : étude électrique et physico-chimique, application à la destruction du dioxyde d'azote, Doctorate Thesis, Université de Pau et des Pays de l'Adour (France), 2002
[14] Ercilbengoa, A.E., Loiseau, J.F., Spyrou, N., J. Phys. D: Appl. Phys. 33, 2425 (2000)
[15] Ercilbengoa, A.E., Spyrou, N., Loiseau, J.F., J. Phys. D: Appl. Phys. 34, 584 (2001)
[16] Baricos, J., Dupuy, J., Peyrous, R., Schreiber, G., J. Phys. D: Appl. Phys. 11, L187 (1978)
[17] Loiseau, J.F., Batina, J., Noël, F., Peyrous, R., J. Phys. D: Appl. Phys. 35, 1020 (2002)
[18] R.S. Sigmond, Corona Discharges in Electrical Breakdown in Gases, edited by J.M. Meek, J.D. Craggs (New-York: John Wiley and Sons, 1978), pp. 319-384
[19] M. Goldmanand, A. Goldman, Corona Discharges in Gaseous Electronics, edited by M.N. Hirsch, H.J. Oskam (New-York: Academic Press, 1978), Vol. II, pp. 219-290
[20] J.F. Loiseau, F. Grangé, N. Spyrou, N. Soulem, B. Held, Proc.11th Int. Conf. on Gas Discharges and their Applications, Tokyo (Japan), 1995, Vol. II, pp. 492-495
[21] Grangé, F., Soulem, N., Loiseau, J.F., Spyrou, N., J. Phys. D: Appl. Phys. 28, 1619 (1995)
[22] F. Grangé, J.F. Loiseau, N. Spyrou, Proc. 5th Int. Sympos. on High Pressure Low Temperature Plasma Chemistry, HAKONE V, Milovy (Czech Republic), 1996, pp. 205-209
[23] Aleksandrov, N.L., Bazelyan, E.M., Gorunov, A.Yu., Kochetov, I.V., J. Phys. D: Appl. Phys. 32, 2636 (1999)
[24] Aleksandrov, N.L., Bazelyan, E.M., Novitskii, G.A., J. Phys. D: Appl. Phys. 34, 1374 (2001)
[25] van Veldhuizen, F.M., Rutgers, W.R., J. Phys. D: Appl. Phys. 35, 2169 (2002)
[26] Soulem, N., Held, B., Chapelle, J., J. Phys. D: Appl. Phys. 29, 1952 (1996)
[27] Penney, G.W., Hummert, G.T., J. Appl. Phys. 41, 572 (1970)
[28] Nicolas, F., Loiseau, J.F., Ercilbengoa, A.E., Peyrous, R., J. Phys. D: Appl. Phys. 31, 3108 (1998)
[29] N. Soulem, Application de l'interaction laser-gaz à l'étude des régimes de fonctionnement d'une décharge électrique, Doctorate Thesis, Université de Pau et des Pays de l'Adour (France), 1996

Keywords

Related content

Powered by UNSILO

Electrical study of DC positive corona discharge in dry and humid air containing carbon dioxide

  • S. Lachaud (a1) and J. F. Loiseau (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.