Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T20:08:28.252Z Has data issue: false hasContentIssue false

Effects of excess carbon and vibrational properties in ultrafine SiC powders

Published online by Cambridge University Press:  15 September 1999

S. Charpentier
Affiliation:
Laboratoire de Physique de l'état condensé (UPRES-A CNRS 6087), Université du Maine, Faculté des Sciences, avenue Olivier Messiaen, 72085 Le Mans Cedex 09, France
A. Kassiba*
Affiliation:
Laboratoire de Physique de l'état condensé (UPRES-A CNRS 6087), Université du Maine, Faculté des Sciences, avenue Olivier Messiaen, 72085 Le Mans Cedex 09, France
A. Bulou
Affiliation:
Laboratoire de Physique de l'état condensé (UPRES-A CNRS 6087), Université du Maine, Faculté des Sciences, avenue Olivier Messiaen, 72085 Le Mans Cedex 09, France
M. Monthioux
Affiliation:
CEMES (UPR CNRS 8011), B.P. 4347, 29 rue Jeanne Marvig, 31055 Toulouse Cedex, France
M. Cauchetier
Affiliation:
CEA-DRECAM, Service des Photons Atomes et Molécules, CE Saclay, 91191 Gif-sur-Yvette Cedex, France
Get access

Abstract

Structural and vibrational properties are investigated in SiC nanopowders synthesized by a CO2 laser pyrolysis of (SiH4, C2H2) gaseous mixture and thermally treated up to 1800 °C. The structural modifications of the SiC crystallites and the arrangement of the carbon in excess are monitored at different annealing stages. A critical behaviour is revealed in the powder annealed at Ta = 1500 °C through the features of the Raman spectra and the insulating-conductor transition. The significant electric conductivity (σ ≈ 0.05 S cm−1) which appears above Ta is discussed with respect to the powder composition and the interface effects where the carbon in excess seems to play a key role.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Niihara, K., Nakahira, K., Ann. Chim. Fr. 16, 479 (1991).
Wakai, F., Kodoma, Y., Sakaguchi, S., Murayama, N., Izaki, K., Niihara, K., Nature 344, 421 (1990). CrossRef
Boulanger, L., Herlin, N., Luce, M., Cauchetier, M., Tougne, P., Hommel, H., Legrand, A.P., Third Euro-Ceramics 1, 21 (1993).
Charpentier, S., Kassiba, A., Fusil, S., Armand, X., Cauchetier, M., Emery, J., Appl. Magn. Reson. 12, 255 (1997). CrossRef
Charpentier, S., Kassiba, A., Emery, J., Cauchetier, M., J. Phys.-Cond. Matter 11, 4887 (1999). CrossRef
S. Charpentier, Ph.D. thesis, University of Le Mans, France, 1998.
Sasaki, Y., Nishina, Y., Sato, M., Okamura, K., J. Mater. Sci. 22, 443 (1987). CrossRef
Sasaki, Y., Nishina, Y., Sato, M., Okamura, K., Phys. Rev. B 40, 1762 (1989). CrossRef
Karlin, S., Colomban, P.H., J. Raman Spect. 28, 219 (1997). 3.0.CO;2-F>CrossRef
Vidano, R.P., Fischbach, D.B., Willis, L.J., Loehr, T.M., Solid St. Commun. 39, 341 (1981). CrossRef
Wagner, J., Ramsteiner, M., Wild, Ch., Koidl, P., Phys. Rev. B 40, 1817 (1989). CrossRef
Inoue, Y., Nakashima, S., Mitsuishi, A., Solid St. Commun. 48, 1071 (1983). CrossRef
A. Oberlin, Chemistry and Physics of Carbon, edited by P.A. Thrower (Marcel Dekker, New York, 1989), Vol. 22, p. 1.
Badami, D.V., Carbon 3, 53 (1965). CrossRef
Oberlin, A., Rouchy, J.-P., Carbon 9, 39 (1971). CrossRef
Audier, M., Oberlin, A., Oberlin, M., Coulon, M., Bonnetain, L., Carbon 19, 217 (1981). CrossRef
Monthioux, M., Delverdier, O., J. Europ. Ceram. Soc. 16, 721 (1996). CrossRef
F. Laanani, Ph.D. thesis, University of Orléans, France, 1997.
Le Coustumer, P., Monthioux, M., Oberlin, A. , J. Europ. Ceram. Soc. 11, 95 (1993). CrossRef
Dillon, R.O., Woollam, J.A., Katkanant, V., Phys. Rev. B 29, 3482 (1984). CrossRef
Olego, D., Cardona, M., Phys. Rev. B 25, 1151 (1982). CrossRef
Feldman, D.W., Parker, J.H., Choyke, W.J., Patrick, L., Phys. Rev. 173, 787 (1968); ibid. 170, 698 (1968). CrossRef