Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-29T06:17:44.672Z Has data issue: false hasContentIssue false

Effects of atmospheric species and vacancy defect on electron transfer between diamond (0 0 1) surface and adlayer

Published online by Cambridge University Press:  03 August 2012

C.X. Yan*
Affiliation:
School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650500, P.R. China
Q.W. Jiang
Affiliation:
School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650500, P.R. China
Get access

Abstract

The electron transfer between diamond (0 0 1) surface without and with various vacancy defects and adlayer with various adsorbed atmospheric species is examined based on first-principles calculations, which plays an important role for the conductivity of diamond (0 0 1) surface. The results show that the electron transfer from the perfect diamond surface (without defect in diamond surface or subsurface layer) to the adlayer varies with the adlayer adsorbed on the surface. The largest electron transfer is about 1.08e from the perfect surface to the adlayer (10) (O2, H3O+) among the possible adlayers, such as (1) (H2O, H2O), (2) (H2O, H3O+), (3) (H2O, CO2) … (20) (N2, O2), (21) (N2, N2) layers. It is found that the vacancy defect in surface or subsurface layer also affects the diamond (0 0 1) surface conductivity by increasing or reducing the electron transfer from the surface to the adlayer. It is also noted that the electron transfer increases largely in the case that the (10) (O2, H3O+) system is adsorbed on the diamond (0 0 1) surface with vacancy defect in the surface or subsurface layer, in which the electron transfer is largest with 1.27e when the monovacancy defect forms in the subsurface layer. Our study is useful to understand the conductivity of diamond surface.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Prelas, M., Popovici, G., Bigelow, L. (eds.), Handbook of Industrial Diamonds and Diamond Films (Marcel Dekker, New York, 1998)Google Scholar
Angus, J.C., Hayman, C.C., Science 241, 913 (1988)CrossRef
Chow, T.P., Tyagi, R., IEEE Trans. Electron Devices 41, 1418 (1994)CrossRef
Landstrass, M.I., Ravi, K.V., Appl. Phys. Lett. 55, 975 (1989)CrossRef
Grot, S.A., Gildenblat, G.S., Hatfield, C.W., Wronski, C.R., Badzian, A.R., Badzian, T., Mesier, R., IEEE Electron Device Lett. 11, 100 (1990)CrossRef
Albin, S., Watkins, L., Appl. Phys. Lett. 56, 1454 (1990)CrossRef
Tetsuro, M., Syozo, S., Masaaki, K., Yoshiyuki, S., Ken, S., Takeshi, K., Jpn J. Appl. Phys. 31, L1446 (1992)
Yusuke, M., Yoshiyuki, S., Masahiro, D., Hiromasa, Y., Hiroyuki, Y., Nobuhiro, E., Takashi, O., Akimitsu, H., Kazuhito, N., Makoto, K., Toshimichi, I., Takashi, H., Tomio, I., Takatomo, S., Akio, H., Jpn J. Appl. Phys. 32, L987 (1993)
Kawarada, H., Sasaki, H., Sato, A., Phys. Rev. B 52, 11351 (1995)CrossRef
Maier, F., Riedel, M., Mantel, B., Ristein, J., Ley, L., Phys. Rev. Lett. 85, 3472 (2000)CrossRef
Hayashi, K., Yamanaka, S., Watanabe, H., Sekiguchi, T., Okushi, H., Kajimura, K., J. Appl. Phys. 81, 744 (1997)CrossRef
Ri, S.G., Kazuhiro, T., Seiichi, T., Takao, F., Hideki, K., Tateki, K., Masamori, I., Jpn J. Appl. Phys. 38, 3492 (1999)CrossRef
Tsugawa, K., Kitatani, K., Noda, H., Hokazono, A., Hirose, K., Tajima, M., Kawarada, H., Diamond Rel. Mater. 8, 927 (1999)CrossRef
Denisenko, A., Aleksov, A., Pribil, A., Gluche, P., Ebert, W., Kohn, E., Diamond Rel. Mater. 9, 1138 (2000)CrossRef
Dai, Y., Huang, B.B., Dai, D.D., Diamond Rel. Mater. 12, 15 (2003)CrossRef
Ristein, J., Riedel, M., Ley, L., J. Electrochem. Soc. 151, E315 (2004)CrossRef
Andriotis, A.N., Mpourmpakis, G., Richter, E., Menon, M., Phys. Rev. Lett. 100, 106801 (2008)CrossRef
Larsson, K., Ristein, J., J. Phys. Chem. B 109, 10304 (2005)CrossRef
Petrini, D., Larsson, K., J. Phys. Chem. C 111, 13804 (2007)CrossRef
Li, Y.L., Li, J.J., Xia, X.X., Lu, C., Jin, H., Gu, C.Z., J. Appl. Phys. 105, 013706 (2009)CrossRef
Kubovic, M., Kasu, M., Kageshima, H., Appl. Phys. Lett. 96, 052101 (2010)CrossRef
Foord, J.S., Lau, C.H., Hiramatsu, M., Jackman, R.B., Nebeld, C.E., Bergonzoe, P., Diamond Rel. Mater. 11, 856 (2002)CrossRef
Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., Payne, M.C., J. Phys.: Condens. Matter. 14, 2717 (2002)
Monkhorst, H.J., Pack, J.D., Phys. Rev. B 13, 5188 (1976)CrossRef
Perdew, J.P., Burke, K., Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996)CrossRef
Petrini, D., Larsson, K., J. Phys. Chem. B 109, 22426 (2005)CrossRef
Larsson, K., New Diamond Front. Carbon Technol. 15, 229 (2005)