Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T14:41:53.741Z Has data issue: false hasContentIssue false

Eddy-current formulation for constructing transmission-line models for machine windings ***

Published online by Cambridge University Press:  03 February 2010

H. De Gersem*
Affiliation:
Katholieke Universiteit Leuven, Faculty of Science, Belgium
O. Henze
Affiliation:
Technische Universität Darmstadt, Institut für Theorie Elektromagnetischer Felder, Germany
T. Weiland
Affiliation:
Technische Universität Darmstadt, Institut für Theorie Elektromagnetischer Felder, Germany
A. Binder
Affiliation:
Technische Universität Darmstadt, Institut für Elektrische Energiewandlung, Germany
Get access

Abstract

In this paper, an eddy-current formulation is used to determine the transmission-line parameters of a machine winding. It is shown that this formulation covers a broader frequency range than the commonly used low-frequency magnetostatic and high-frequency magnetodynamic approximations. The eddy-current formulation, however, suffers from large computation times and may lead to severe inaccuracies if the finite-element mesh does not resolve the skin depth, a modelling concern that does not exist for the traditional formulations. The three finite-element models are compared according to the accuracy of the resulting transmission-line model applied to the winding of a permanent-magnet synchronous machine.


Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This article has been submitted as part of “NUMELEC 2008 – 6e Conférence Européenne sur les Méthodes Numériques en Électromagnétisme”, 8–10 December 2008, Liège

**

This work has been carried out in the collaborative research group (Forschergruppe 575) “High-frequency parasitic effects in inverter-fed electrical drives” funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG).

References

A. Binder, “Armature insulation stress of low voltage AC motors due to inverter supply”, in Proc. ICEM, Paris, France, 1994, Vol. 2, pp. 431–436
Kaufhold, M., Auinger, H., Berth, M., Speck, J., Eberhardt, M., IEEE Trans. Ind. Electron. 47, 396 (2000) CrossRef
O. Henze, S. Koch, H. De Gersem, T. Weiland, “A 3D coil model for bearing current analysis of inverter-fed drives”, in Proc. EPE, Barcelona, Spain, 2009 (CD ROM)
Murai, Y., Kubota, T., IEEE Trans. Ind. Applicat. 28, 858 (1992) CrossRef
Ogasawara, S., Akagi, H., IEEE Trans. Ind. Applicat. 32, 29 (1996) CrossRef
O. Magdun, A. Binder, A. Rocks, O. Henze, “Prediction of common mode ground current in motors of inverter-based drive systems”, in Proc. Electromotion & ACEMP 2007, Bodrum, Turkey, 2007, pp. 824–830
Zhong, E., Lipo, T., IEEE Trans. Ind. Applicat. 31, 1247 (1995) CrossRef
T. Halkossari, H. Tuusa, “Reduction of conducted emissions and motor bearing currents in current source PWM inverter drives”, in Power Electronics Specialists Conf. (PESC'99) (1999), Vol. 2, p. 959–964
G. Skibinski, R. Kerkman, D. Leggate, J. Pankau, D. Schlegel, “Reflected wave modeling techniques for PWM AC motor drives”, in IEEE Applied Power Electronics Conf., Anaheim, CA, USA, 1998, pp. 1021–1029
Moreira, A., Lipo, T., Venkataramanan, G., Bernet, S., IEEE Trans. Ind. Applicat. 38, 1297 (2002) CrossRef
B. Bolsens, K. De Brabandere, J. Van den Keybus, J. Driesen, R. Belmans, “Transmission line effects on motor feed cables”, in Proc. IEMDC, Madison, Wisconsin, USA, 2003, pp. 1866–1872
S. Hoole, Computer-aided Analysis and Design of Electromagnetic Devices (Elsevier, North-Holland, 1988)
H. De Gersem, O. Henze, T. Weiland, A. Binder, “Transmission-line modelling of wave propagation effects in machine windings”, in EPE-PEMC 2008 (2008), pp. 2416–2423
C. Paul, Analysis of Multiconductor Transmission Lines, 2nd edn. (Wiley Blackwell, 2007)
C. Christopoulos, The Transmission-line Modeling Method: TLM, IEEE/OUP Series on Electromagnetic Wave Theory (IEEE Press, New York and Oxford University Press, Oxford, 1995)
Taylor, C., Satterwhite, R., Harrison, C., IEEE Trans. Ant. Prop. 13, 987 (1965) CrossRef
Paul, C., IEEE Trans. Microwave Theory Tech. 21, 450 (1973) CrossRef
Celozzi, S., Feliziani, M., IEEE Trans. Electromagn. Compat. 37, 421 (1995) CrossRef
Lei, G., Pan, G., Gilbert, B., IEEE Trans. Microwave Theory Tech. 43, 2090 (1995) CrossRef
Cheldavi, A., Kamarei, M., Naeini, S., IEEE Trans. Electromagn. Compat. 42, 308 (2000) CrossRef
N. Watson, J. Arrillaga, Power Systems Electromagnetic Transients Simulation, in IEE Power & Energy Series, Vol. 39 (The Institution of Electrical Engineers, London, 2003)
Computer Simulation Technology AG, CST Cable Studio, www.cst.com/Content/Products/CST_CS/Overview.aspx
Dular, P., Legros, W., Nicolet, A., IEEE Trans. Magn. 34, 3078 (1998) CrossRef
O. Henze, Z. Çay, O. Magdun, H. De Gersem, T. Weiland, A. Binder, “A stator coil model for studying high-frequency effects in induction motors”, in Proc. SPEEDAM, Ischia, Italy, 2008
P. Maeki-Ontto, J. Luomi, “Common-mode flux calculation of AC machines”, in Proc. ICEM, Brugge, Belgium, 2002, paper No. 549 (CD ROM)
A. Muetze, H. De Gersem, T. Weiland, “Influence of teeth and cooling ducts on the HF common mode flux of inverter-fed AC machines”, in Proc. IEEE Ind. Appl. Soc. 40th Ann. Meet., Kowloon, Hong Kong, 2005 (CD ROM)
H. De Gersem, A. Muetze, “Simulation of electric machine common-mode impedance using a combined TL-FE-analytic model”, in Proc. ISEF, Arras, France, 2009 (CD ROM)