Skip to main content Accessibility help
×
Home

Eddy-current formulation for constructing transmission-line models for machine windings * **

  • H. De Gersem (a1), O. Henze (a2), T. Weiland (a2) and A. Binder (a3)

Abstract

In this paper, an eddy-current formulation is used to determine the transmission-line parameters of a machine winding. It is shown that this formulation covers a broader frequency range than the commonly used low-frequency magnetostatic and high-frequency magnetodynamic approximations. The eddy-current formulation, however, suffers from large computation times and may lead to severe inaccuracies if the finite-element mesh does not resolve the skin depth, a modelling concern that does not exist for the traditional formulations. The three finite-element models are compared according to the accuracy of the resulting transmission-line model applied to the winding of a permanent-magnet synchronous machine.


Copyright

Corresponding author

Footnotes

Hide All
*

This article has been submitted as part of “NUMELEC 2008 – 6e Conférence Européenne sur les Méthodes Numériques en Électromagnétisme”, 8–10 December 2008, Liège

**

This work has been carried out in the collaborative research group (Forschergruppe 575) “High-frequency parasitic effects in inverter-fed electrical drives” funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG).

Footnotes

References

Hide All
[1] A. Binder, “Armature insulation stress of low voltage AC motors due to inverter supply”, in Proc. ICEM, Paris, France, 1994, Vol. 2, pp. 431–436
[2] Kaufhold, M., Auinger, H., Berth, M., Speck, J., Eberhardt, M., IEEE Trans. Ind. Electron. 47, 396 (2000)
[3] O. Henze, S. Koch, H. De Gersem, T. Weiland, “A 3D coil model for bearing current analysis of inverter-fed drives”, in Proc. EPE, Barcelona, Spain, 2009 (CD ROM)
[4] Murai, Y., Kubota, T., IEEE Trans. Ind. Applicat. 28, 858 (1992)
[5] Ogasawara, S., Akagi, H., IEEE Trans. Ind. Applicat. 32, 29 (1996)
[6] O. Magdun, A. Binder, A. Rocks, O. Henze, “Prediction of common mode ground current in motors of inverter-based drive systems”, in Proc. Electromotion & ACEMP 2007, Bodrum, Turkey, 2007, pp. 824–830
[7] Zhong, E., Lipo, T., IEEE Trans. Ind. Applicat. 31, 1247 (1995)
[8] T. Halkossari, H. Tuusa, “Reduction of conducted emissions and motor bearing currents in current source PWM inverter drives”, in Power Electronics Specialists Conf. (PESC'99) (1999), Vol. 2, p. 959–964
[9] G. Skibinski, R. Kerkman, D. Leggate, J. Pankau, D. Schlegel, “Reflected wave modeling techniques for PWM AC motor drives”, in IEEE Applied Power Electronics Conf., Anaheim, CA, USA, 1998, pp. 1021–1029
[10] Moreira, A., Lipo, T., Venkataramanan, G., Bernet, S., IEEE Trans. Ind. Applicat. 38, 1297 (2002)
[11] B. Bolsens, K. De Brabandere, J. Van den Keybus, J. Driesen, R. Belmans, “Transmission line effects on motor feed cables”, in Proc. IEMDC, Madison, Wisconsin, USA, 2003, pp. 1866–1872
[12] S. Hoole, Computer-aided Analysis and Design of Electromagnetic Devices (Elsevier, North-Holland, 1988)
[13] H. De Gersem, O. Henze, T. Weiland, A. Binder, “Transmission-line modelling of wave propagation effects in machine windings”, in EPE-PEMC 2008 (2008), pp. 2416–2423
[14] C. Paul, Analysis of Multiconductor Transmission Lines, 2nd edn. (Wiley Blackwell, 2007)
[15] C. Christopoulos, The Transmission-line Modeling Method: TLM, IEEE/OUP Series on Electromagnetic Wave Theory (IEEE Press, New York and Oxford University Press, Oxford, 1995)
[16] Taylor, C., Satterwhite, R., Harrison, C., IEEE Trans. Ant. Prop. 13, 987 (1965)
[17] Paul, C., IEEE Trans. Microwave Theory Tech. 21, 450 (1973)
[18] Celozzi, S., Feliziani, M., IEEE Trans. Electromagn. Compat. 37, 421 (1995)
[19] Lei, G., Pan, G., Gilbert, B., IEEE Trans. Microwave Theory Tech. 43, 2090 (1995)
[20] Cheldavi, A., Kamarei, M., Naeini, S., IEEE Trans. Electromagn. Compat. 42, 308 (2000)
[21] N. Watson, J. Arrillaga, Power Systems Electromagnetic Transients Simulation, in IEE Power & Energy Series, Vol. 39 (The Institution of Electrical Engineers, London, 2003)
[22] Computer Simulation Technology AG, CST Cable Studio, www.cst.com/Content/Products/CST_CS/Overview.aspx
[23] Dular, P., Legros, W., Nicolet, A., IEEE Trans. Magn. 34, 3078 (1998)
[24] O. Henze, Z. Çay, O. Magdun, H. De Gersem, T. Weiland, A. Binder, “A stator coil model for studying high-frequency effects in induction motors”, in Proc. SPEEDAM, Ischia, Italy, 2008
[25] P. Maeki-Ontto, J. Luomi, “Common-mode flux calculation of AC machines”, in Proc. ICEM, Brugge, Belgium, 2002, paper No. 549 (CD ROM)
[26] A. Muetze, H. De Gersem, T. Weiland, “Influence of teeth and cooling ducts on the HF common mode flux of inverter-fed AC machines”, in Proc. IEEE Ind. Appl. Soc. 40th Ann. Meet., Kowloon, Hong Kong, 2005 (CD ROM)
[27] H. De Gersem, A. Muetze, “Simulation of electric machine common-mode impedance using a combined TL-FE-analytic model”, in Proc. ISEF, Arras, France, 2009 (CD ROM)

Eddy-current formulation for constructing transmission-line models for machine windings * **

  • H. De Gersem (a1), O. Henze (a2), T. Weiland (a2) and A. Binder (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed