Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T18:44:48.250Z Has data issue: false hasContentIssue false

Doping of poly(3-hexylthiophene) nanofibers: microscopic morphology and electrical properties

Published online by Cambridge University Press:  10 March 2009

S. Desbief*
Affiliation:
Laboratory for Chemistry for Novel Materials, University of Mons Hainaut/Materia Nova, 20 Place du Parc, 7000 Mons, Belgium
G. Derue
Affiliation:
Laboratory for Chemistry for Novel Materials, University of Mons Hainaut/Materia Nova, 20 Place du Parc, 7000 Mons, Belgium
Ph. Leclère
Affiliation:
Laboratory for Chemistry for Novel Materials, University of Mons Hainaut/Materia Nova, 20 Place du Parc, 7000 Mons, Belgium
S. Lenfant
Affiliation:
Molecular Nanostructures and Devices group, Institute for Electronics, Microelectronics and Nanotechnology (IEMN), CNRS, Avenue Poincaré, BP 60069, 59652 Cedex, Villeneuve d'Ascq, France
D. Vuillaume
Affiliation:
Molecular Nanostructures and Devices group, Institute for Electronics, Microelectronics and Nanotechnology (IEMN), CNRS, Avenue Poincaré, BP 60069, 59652 Cedex, Villeneuve d'Ascq, France
R. Lazzaroni
Affiliation:
Laboratory for Chemistry for Novel Materials, University of Mons Hainaut/Materia Nova, 20 Place du Parc, 7000 Mons, Belgium
Get access

Abstract

The microstructure of thin deposits of poly(3-hexylthiophene) on silicon surfaces is investigated as a function of the solution concentration, the maturation time and the solvent nature, with the aim of generating one monolayer of P3HT nanofibers on the surface. These films are then exposed to a NOPF6 solution, in order to oxidize the conjugated system and to produce conducting nanostructures. The effect of the chemical doping on the microscopic morphology and the electrical properties is analyzed on the basis of AFM and I-V measurements.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dimitrakopoulos, C.D., Malenfant, P.R.L., Adv. Mater. 14, 99 (2002) 3.0.CO;2-9>CrossRef
Horowitz, G., J. Mater. Res. 19, 1946 (2004) CrossRef
Dimitrakopoulos, C.D., Masacaro, D.J., IBM J. Res. Dev. 45, 11 (2001) CrossRef
Fix, W., Ullmann, A., Ficker, J., Clemens, W., Appl. Phys. Lett. 81, 1735 (2002) CrossRef
Bao, Z., Dodabalapur, A., Lovinger, A.J., Appl. Phys. Lett. 69, 4108 (1996) CrossRef
Sirringhaus, H., Tessler, N., Friend, R.H., Science 280, 1741 (1998) CrossRef
Liu, J., Kadnikova, E.N., Liu, Y., McGehee, M.D., Frechet, J.M.J., J. Am. Chem. Soc. 126, 9486 (2004) CrossRef
Wang, G., Swensen, J., Moses, D., Heeger, A.J., J. Appl. Phys. 93, 6137 (2003) CrossRef
Wang, G., Moses, D., Heeger, A.J., J. Appl. Phys. 95, 316 (2004) CrossRef
Chang, J.F., Baoquan, S., Breiby, D.W., Nielsen, M.M., Sölling, T.I., Giles, M., McCulloch, I., Sirringhaus, H., Chem. Mater. 16, 4772 (2004) CrossRef
Sirringhaus, H., Brown, P.J., Friend, R.H., Nielsen, M.M., Bechgaard, K., Langeveld-Voss, B.M.W., Spiering, A.J.H., Janssen, R.A.J., Meijer, E.W., Herwig, P., de Leeuw, D.M., Nature 401, 685 (1999) CrossRef
Surin, M., Leclère, P., Lazzaroni, R., Yuen, J.D., Wang, G., Moses, D., Heeger, A.J., Cho, S., Lee, K., J. Appl. Phys. 100, 33712 (2006) CrossRef
Yang, H., Park, S., Kim, D., Magonov, S., Cho, K., Chang, T., Bao, Z., Ryu, C.R., Polymer Preprints 44, 333 (2003)
Kline, R.J., McGehee, M.D., Adv. Mater. 15, 1519 (2003) CrossRef
Merlo, J.A., Frisbie, C.D., J. Phys. Chem. B 108, 19169 (2004) CrossRef
Zhang, R., Li, B., Iovu, M.C., Jeffries, E.L.M., Sauve, G., Cooper, J., Jia, S., Tristram-Nagle, S., Smilgies, D.M., Lambeth, D.N., McCullough, R.D., Kowalewski, J., J. Am. Chem. Soc. 128, 3450 (2006)
Lazzaroni, R., Lögdlund, M., Stafström, S., Salaneck, W.R., Brédas, J.L., J. Chem. Phys. 93, 4433 (1990) CrossRef
S. Berson, Ph.D. thesis, University Joseph-Fourier, Grenoble, 2007