Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T10:30:41.048Z Has data issue: false hasContentIssue false

Differential material matrices for the finite integration technique

Published online by Cambridge University Press:  16 August 2007

H. De Gersem*
Affiliation:
Katholieke Universiteit Leuven, Campus Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
I. Munteanu
Affiliation:
Computer Simulation Technology, Bad Nauheimer Straße 19, 64289 Darmstadt, Germany
T. Weiland
Affiliation:
Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt, Schloßgartenstraße 8, 64289 Darmstadt, Germany
Get access

Abstract

In this paper, differential conductivity and reluctivity matrices are constructed for formulations discretised by the finite integration technique and linearised by the Newton method. It turns out that these matrices are nondiagonal and unsymmetric, even in the case that orthogonal grids are used. A diagonal approximation of the differential matrices leads to an approximate Newton method where cross-magnetisation effects are no longer considered, except in the update between the successive nonlinear iteration steps. The approximate method does not guarantee second order convergence but outperforms the true Newton method when only a moderate accuracy is required.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Weiland, T., Int. J. Electron. Commun. AEÜ 31, 116 (1977)
Weiland, T., Int. J. Num. Modell. 9, 295 (1996) 3.0.CO;2-8>CrossRef
J. Nocedal, S. Wright, Numerical Optimization, Springer Series in Operations Research, 1st edn. (Springer, New York, USA, 1999)
Motrescu, V., van Rienen, U., IEEE Trans. Magn. 42, 747 (2006) CrossRef
Spachmann, H., Schuhmann, R., Weiland, T., ACES J. 17, 11 (2002)
Weiland, T., Int. J. Electron. Commun. AEÜ 33, 170 (1979)
Müller, W., Krüger, J., Jacobus, A., Winz, R., Weiland, T., Euler, H., Kamm, U., Novender, W., Arch. Elektrotech. 65, 299 (1982) CrossRef
Clemens, M., Weiland, T., IEEE Trans. Magn. 38, 389 (2002) CrossRef
Thoma, P., Weiland, T., Int. J. Num. Modell. 9, 359 (1996) 3.0.CO;2-A>CrossRef
Schuhmann, R., Weiland, T., IEEE Trans. Magn. 36, 897 (2000) CrossRef
van Rienen, U., Int. J. Num. Modell. 12, 107 (1999) 3.0.CO;2-2>CrossRef
Schuhmann, R., Schmidt, P., Weiland, T., IEEE Trans. Magn. 38, 409 (2002) CrossRef
M. Gee, C. Siefert, J. Hu, R. Tuminaro, M. Sala, Tech. Rep. SAND2006-2649, Sandia National Laboratories (2006)
Kalimov, A., Moritz, G., Zeller, A., IEEE Trans. Appl. Supercond. 14, 271 (2004) CrossRef