Skip to main content Accessibility help
×
Home

Defects in SiC substrates and epitaxial layers affecting semiconductor device performance

  • St. G. Müller (a1), J. J. Sumakeris (a1), M. F. Brady (a1), R. C. Glass (a1), H. McD. Hobgood (a1), J. R. Jenny (a1), R. Leonard (a1), D. P. Malta (a1), M. J. Paisley (a1), A. R. Powell (a1), V. F. Tsvetkov (a1), S. T. Allen (a1), M. K. Das (a1), J. W. Palmour (a1) and C. H. Carter (a1)...

Abstract

The current status of SiC bulk growth is reviewed, while specific attention is given to the effect of defects in SiC substrates and epitaxial layers on device performance and yield. The progress in SiC wafer quality is reflected in the achievement of micropipe densities as low as 0.92 cm−2 for a 3-inch n-type 4H-SiC wafer, which provides the basis for a high yielding fabrication process of large area SiC power devices. Using a Murphy Probe Yield Analysis for the breakdown characteristics of 10 kV PiN diodes we have extracted an “effective” defect density for 4H-SiC material to be as low as 30 cm−2, providing valuable information to further isolate and address the specific material defects critical for device performance. We address the problematic degradation of the forward characteristics (V f -drift) of bipolar SiC PiN diodes [CITE]. The underlying mechanism due to stacking fault formation in the epitaxial layers and possible effects of device processing are investigated. An improved device design is demonstrated, which effectively stabilizes this V f -drift. We show the progression in the development of semi-insulating SiC grown by the sublimation technique from extrinsically doped material to high purity semi-insulating (HPSI) 4H-SiC bulk crystals of up to 100 mm diameter without resorting to the intentional introduction of elemental deep level dopants, such as vanadium. Uniform resistivities in 3-inch HPSI wafers greater than 3 × 1011 Ω-cm have been achieved. Secondary ion mass spectrometry, deep level transient spectroscopy and electron paramagnetic resonance data suggest that the semi-insulating behavior in HPSI material originates from deep levels associated with intrinsic point defects. MESFETs produced on HPSI wafers are free of backgating effects and have resulted in the best combination of power density and efficiency reported to date for SiC MESFETs of 5.2 W/mm and 63% power added efficiency (PAE) at 3.5 GHz.

Copyright

Corresponding author

References

Hide All
[1] Lendenmann, H., Dahlquist, F., Bergmann, J. P., Bleichner, H., Hallin, C., Mater. Sci. Forum 389-393, 12591264 (2002)
[2] Müller, St. G., Glass, R. C., Hobgood, H. M., Tsvetkov, V. F., Brady, M., Henshall, D., Jenny, J. R., Malta, D., Carter, C. H. Jr., J. Cryst. Growth 211, 325 (2000)
[3] Hobgood, D., Brady, M., Brixius, W., Fechko, G., Glass, R., Henshall, D., Jenny, J., Leonard, R., Malta, D., Müller, St. G., Tsvetkov, V., Carter Jr, C.., Mater. Sci. Forum 338-342, 38 (2000)
[4] St. Müller, R. Eckstein, D. Hofmann, E. Schmitt, W. Schoierer, A. Winnacker, W. Dorsch, H. P. Strunk, Mat. Sci. Eng. B 44, 392 (1997)
[5] Neudeck, P. G., Powell, J. A., IEEE Electron Dev. Lett. 15, 63 (1994)
[6] Neudeck, P. G., Huang, W., Dudley, M., IEEE Trans. Electron Devices 46, 478 (1999)
[7] Müller, St. G., Glass, R. C., Hobgood, H. M., Tsvetkov, V. F., Brady, M., Henshall, D., Malta, D., Singh, R., Palmour, J., Carter, C. H. Jr., Mater. Sci. Eng. B 80, 327 (2001)
[8] Hobgood, H. Mc D., Glass, R. C., Augustine, G., Hopkins, R. H., Jenny, J., Skowronski, M., Mitchell, W. C., Roth, M., Appl. Phys. Lett. 66, 1364 (1995)
[9] Galeckas, A., Linnros, J., Breitholtz, B., Appl. Phys. Lett. 74, 3398 (1999)
[10] Kuhr, T. A., Liu, J. L., Chung, H. J., Skowronski, M., J. Appl. Phys. 92, 5863 (2002)
[11] Noblanc, O., Arnodo, C., Dua, C., Chartier, E., Brylinski, C., Mater. Sci. Forums 338-342, 12471250 (2000)
[12] Hilton, K. P., Uren, M. J., Hayes, D. G., Wilding, P. J., Johnson, H. K., Guest, J. J., Smith, B. H., Mater. Sci. Forum 338-342, 12511254 (2000)
[13] Jenny, J. R., Müller, S. G., Powell, A., Brady, M., Tsvetkov, V. F., Hobgood, H. M., Glass, R. C., Carter, C. H., J. Electron Mater. 31, 366 (2002)
[14] Müller, St. G., Eckstein, R., Fricke, J., Hofmann, D., Hofmann, R., Horn, R., Mehling, H., Nilsson, O., Mater. Sci. Forum 264-268, 623626 (1998)
[15] Dalibor, T., Pensl, G., Matsunami, H., Kimoto, T., Choyke, W. J., Schöner, A., Nordell, N., Phys. Stat. Sol. A 162, 199 (1997)
[16] Aradi, B., Gali, A., Deak, P., Rauls, E., Frauenheim, Th., Son, N. T., Mater. Sci. Forum 353-356, 455458 (2001)
[17] N. T. Son, P. N. Hai, E. Jansen, Phys. Rev. B 63, 201201 (R) (2001)
[18] Zvanut, M. E., Konovalov, V. V., Appl. Phys. Lett. 80, 410 (2002)

Keywords

Defects in SiC substrates and epitaxial layers affecting semiconductor device performance

  • St. G. Müller (a1), J. J. Sumakeris (a1), M. F. Brady (a1), R. C. Glass (a1), H. McD. Hobgood (a1), J. R. Jenny (a1), R. Leonard (a1), D. P. Malta (a1), M. J. Paisley (a1), A. R. Powell (a1), V. F. Tsvetkov (a1), S. T. Allen (a1), M. K. Das (a1), J. W. Palmour (a1) and C. H. Carter (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed