Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T13:54:32.568Z Has data issue: false hasContentIssue false

Correlation of atomic force microscopy and photoluminescence analysis of GaAs nanocrystallites elaborated by electrochemical etching of n+ type GaAs

Published online by Cambridge University Press:  19 July 2010

T. Abdellaoui*
Affiliation:
Laboratoire de Photovoltaïques, Semiconducteurs et Nanostructures, Centre des Recherches et des Technologies de l'Énergie, BP 95, Hammam-Lif, 2050, Tunisia
A. Bardaoui
Affiliation:
Laboratoire de Photovoltaïques, Semiconducteurs et Nanostructures, Centre des Recherches et des Technologies de l'Énergie, BP 95, Hammam-Lif, 2050, Tunisia
M. Daoudi
Affiliation:
Laboratoire de Photovoltaïques, Semiconducteurs et Nanostructures, Centre des Recherches et des Technologies de l'Énergie, BP 95, Hammam-Lif, 2050, Tunisia
R. Chtourou
Affiliation:
Laboratoire de Photovoltaïques, Semiconducteurs et Nanostructures, Centre des Recherches et des Technologies de l'Énergie, BP 95, Hammam-Lif, 2050, Tunisia
Get access

Abstract

GaAs nanocrystallites are elaborated by electrochemical etching of n+ type GaAs substrates. Photoluminescence (PL) and atomic force microscope (AFM) images analysis are used to study the porous layers obtained with different etching times. Two kind of quantum confinement due to the formation of two nanostructures of different sizes are observed from room temperature photoluminescence (RTPL) spectra. The surface topography and the density of grains of the porous GaAs (π-GaAs) samples are investigated using the AFM technique. AFM images showed that the structure of films was nanocrystalline with a grain size close to 7 nm, this was confirmed by photoluminescence spectroscopy (PL) and the effective mass theory.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sarua, A., Monecke, J., Irmer, G., Tiginiyanu, I.M., Gartner, G., Hartnagel, H.L., J. Phys.: Condens. Matter. 13, 6687 (2001)
Ali, N.K., Hashim, M.R., Abdul Aziz, A., Abu Hassan, H., Ismail, J., Electrochem. Solid-State Lett. 3, 12 (2009)
Ali, N.K., Hashim, M.R., Abdul Aziz, A., Abu Hassan, H., Semicond. Sci. Technol. 23, 055016 (2008) CrossRef
Anedda, A., Serpi, A., Karravanskii, V.A., Tiginyanu, I.M., Ichizli, V.M., Appl. Phys. Lett. 67, 3316 (1995) CrossRef
Meijerink, A., Bol, A.A., Kelly, J.J., Appl. Phys. Lett. 69, 2801 (1996) CrossRef
Liu, A., Duan, C., Physica E 9, 723 (2001) CrossRef
Kikuno, E., Amiotti, M., Takizawa, T., Arai, S., Jpn J. Appl. Phys. 134, 177 (1995) CrossRef
Ben Khalifa, S., Gruzza, B., Robert-Goumet, C., Bremond, G., Hjiri, M., Saidi, F., Bideux, L., Beji, L., Maaref, H., J. Lumin. 128, 1611 (2008) CrossRef
Beji, L., Sfaxi, L., Ismail, B., Zghal, S., Hassen, F., Maaref, H., Microelectron. J. 34, 969 (2003) CrossRef
Sabataityte, J., Simkiene, I., Bendorius, R.A., Grigoras, K., Jasutis, V., Pacebutas, V., Tvardauskas, H., Naudzius, K., Mater. Sci. Eng. C 19, 155 (2002) CrossRef
Lockwood, D.J., Schmuki, P., Labbe, H.J., Fraser, J.W., Physica E 4, 102 (1999) CrossRef
Aspnes, D.E., Schwartz, B., Studna, A.A., Derick, L., Koszi, L.A., J. Appl. Phys. 48, 3520 (1977) CrossRef
Brus, L.E., J. Chem. Phys. 80, 4403 (1984) CrossRef
Lockwood, D.J., Schmuki, P., Labbé, H.J., Fraser, J.W., Physica E 4, 102 (1999) CrossRef