Skip to main content Accessibility help
×
Home

Conductance of disordered semiconducting nanowires and carbon nanotubes: a chain of quantum dots

  • J.-F. Dayen (a1), T. L. Wade (a1), G. Rizza (a1), D. S. Golubev (a2), C.-S. Cojocaru (a3), D. Pribat (a3), X. Jehl (a4), M. Sanquer (a4) and J.-E. Wegrowe (a1)...

Abstract

A comparative study of the low temperature conductivity of an ensemble of multiwall carbon nanotubes and semiconductor nanowires is presented. The quasi one-dimensional samples are made in nanoporous templates by electrodeposition and CVD growth. Three different structures are studied in parallel: multiwall carbon nanotubes, tellurium nanowires, and silicon nanowires. It is shown that the Coulomb blockade regime dominates the electronic transport below 50 K, together with weak and strong localization effects. In the Coulomb blockade regime, a scaling law of the conductance measured as a function of the temperature and the voltage is systematically observed. This allows a single scaling parameter α to be defined. This parameter accounts for the specific realization of the “disorder”, and plays the role of a fingerprint for each sample. Correlations between α and the conductance measured as a function of temperature and voltage, as a function of the perpendicular magnetic field, and as a function of the temperature and voltage in the localized regime below 1 K have been performed. Three universal laws are reported. They relate the coefficient α (1) to the normalized Coulomb blockade conductance $G_{T}(\alpha)$ , (2) to the phase coherence length $l_{\phi}(\alpha)$ , and (3) to the activation energy $E_{a} (\alpha)$ . These observations suggest a description of the wires and tubes in terms of a chain of quantum dots; the wires and tubes break into a series of islands. The quantum dots are defined by conducting islands with a typical length on the order of the phase coherence length separated by poorly conducting regions (low density of carriers or potential barriers due to defects). A corresponding model is developed in order to put the three universal laws in a common frame.


Copyright

Corresponding author

References

Hide All
[1] See, e.g. for Si nanostructures: A.T. Tilke et al., Prog. Quant. Electron. 25, 97 (2001)
[2] Evans, G.J., Mizuta, H., Ahmed, H., Jpn J. Appl. Phys. 40, 5837 (2001)
[3] Tans, S.J., Dekker, C., Nature 404, 834 (2000)
[4] Bockrath, M., Liang, W., Bozovic, D., Hafner, J.H., Lieber, C.M., Tinkham, M., Park, H., Science 291, 283 (2001)
[5] Bleszynski, A.C., Zwanenburg, F.A., Westervelt, R.M., Roest, A.L., Bakkers, E.P.A.M., Kouwenhoven, L.P., Nano Lett. 7, 2559 (2007)
[6] Sakamoto, T., Kawaura, H., Baba, T., Appl. Phys. Lett. 72, 795 (1998)
[7] Augke, R., Eberhardt, W., Single, C., Prins, F.E., Wharam, D.A., Kern, D.P., Appl. Phys. Lett. 76, 2065 (2000)
[8] Hofheinz, M., Jehl, X., Sanquer, M., Molas, G., Vinet, M., Deleonibus, S., Appl. Phys. Lett. 89, 143504 (2006)
[9] Rochefort, A., Salahub, D.R., Avouris, P., Chem. Phys. Lett. 297, 45 (1998)
[10] Hertel, T., Walkup, R., Avouris, P., Phys. Rev. B 58, 13870 (1998)
[11] Bezryadin, A., Verschueren, A.R.M., Tans, S.J., Dekker, C., Phys. Rev. Lett. 80, 4036 (1998)
[12] Hertel, T., Martel, R., Avouris, P., J. Phys. Chem. B 102, 910 (1998)
[13] Bachtold, A., Henny, M., Terrier, C., Strunk, C., Schoenenberger, C., Salvetat, J.P., Bonard, J.M., Forro, L., Appl. Phys. Lett. 73, 274 (1998)
[14] Kruger, M., Widmer, I., Nussbaumer, T., Buitelaar, M., Schoenenberger, C., New J. Phys. 5, 138 (2003)
[15] Minot, E.D., Yaish, Y., Sazonova, V., Park, J.Y., Brink, M., McEuen, P.L., Phys. Rev. Lett. 90, 156401 (2003)
[16] Bachtold, A., Fuhrer, M.S., Plyasunov, S., Forero, M., Anderson, E.H., Zettl, A., McEuen, P.L., Phys. Rev. Lett. 84, 6082 (2000)
[17] Wade, T.L., Wegrowe, J.-E., Eur. Phys. J. Appl. Phys. 29, 3 (2005)
[18] L. Forro, C. Schoenenberger, in Carbon Nanotubes, edited by M.S. Dresselhaus, G. Dresselhaus, P. Avouris (Springer, Berlin, Heidelberg, New York, 2001)
[19] Z. Yao, C. Dekker, Ph. Avouris, in Carbon Nanotubes, edited by M.S. Dresselhaus, G. Dresselhaus, Ph. Avouris (Springer-Verlag, Berlin, Heidelberg, New York, 2001)
[20] H. Dai, A. Javey, E. Pop, D. Mann, W. Kim, Y. Lu, Nano Lett.1, 1 (2006) and reference therein
[21] Understanding Carbon Nanotubes From Basics to Applications, edited by A. Loiseau, P. Launois, P. Petit, S. Roche, J.-P. Salvetat, Series: Lecture Notes in Physics, Vol. 677 (Springer, Berlin, 2006)
[22] Hoffer, X., Klinke, C., Bonard, J.-M., Gravier, L., Wegrowe, J.-E., Europhys. Lett. 67, 103 (2004)
[23] Dayen, J.-F., Hoffer, X., Wade, T.L., Konczykowski, M., Wegrowe, J.-E., Phys. Rev. B 72, 073402 (2005)
[24] Dayen, J.-F., Jehl, X., Wade, T.L., Sanquer, M., Wegrowe, J.-E., Phys. Stat. Sol. (b) 243, 3413 (2006)
[25] Schoenenberger, C., Bachtold, A., Strunk, C., Salvetat, J.-P., Forro, L., Appl. Phys. A 69, 283 (1999)
[26] Stojetz, B., Hagen, C., Hendlmeier, C., Ljubovic, E., Forro, L., Strunk, C., New J. Phys. 6, 27 (2004)
[27] Kang, N., Hu, J.S., Kong, W.J., Lu, L., Zhang, D.L., Pan, Z.W., Xie, S.S., Phys. Rev. B 66, 241403 (2002)
[28] Haruyama, J., Takesue, I., Kato, S., Takazawa, K., Sato, Y., Appl. Surf. Sci. 175-176, 597 (2001)
[29] Bachtold, A. et al., Nature 397, 673 (1999)
[30] Lee, J.-O. et al., Phys. Rev. B 61, 16362 (2001) ; Lee, J.-O., Phys. Rev. B 64, 157402 (2001) ; Schoenenberger, C., Bachtold, A., Phys. Rev. B 64, 157401 (2001)
[31] Fujiwara, A., Tomiyama, K., Suematsu, H., Yumura, M., Uchida, K., Phys. Rev. B 60, 13492 (1999)
[32] Fedorov, G., Lassagne, B., Sagnes, M., Raquet, B., Broto, J.-M., Triozon, F., Roche, S., Flahaut, E., Phys. Rev. Lett. 94, 066801 (2005)
[33] Man, T.H., Morpurgo, A.F., Phys. Rev. Lett. 95, 026801 (2005)
[34] Frank, S., Poncharal, P., Wang, Z.L., de Heer, W.A., Science 280, 1744 (1998)
[35] Stojetz, B., Miko, C., Forro, L., Strunk, C., Phys. Rev. Lett. 94, 186802 (2005)
[36] Triozon, F., Roche, S., Rubio, A., Mayou, D., Phys. Rev. B 69, 121410 (2004)
[37] Dayen, J.-F., Rumyantseva, A., Ciornei, C., Cojocaru, C.S., Wade, T.L., Pribat, D., Wegrowe, J.-E., Appl. Phys. Lett. 90, 173110 (2007)
[38] Altshuler, B.L., Aronov, A.G., Khmelnitskii, D.E., J. Phys. C 15, 7367 (1982)
[39] B.L. Altshuler, A.G. Aronov, in Electron Electron Interactions in Disordered Systems, edited by M. Pollak, A.L. Efros (North-Holland, Amsterdam, 1985)
[40] E. Akkermans, G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambdrige University Press, Cambridge, 2007)
[41] Fuhrer, M.S., Crespi, V.H., Cohen, M.L., Zettl, A., Solid State Commun. 109, 105 (1999)
[42] H. Grabert, M.H. Devoret, Single Charge Tunneling, Vol. 294 (Plenum Press, New York, 1992)
[43] Pierre, F., Pothier, H., Joyez, P., Birge, N.O., Esteve, D., Devoret, M.H., Phys. Rev. Lett. 86, 1590 (2001)
[44] Rollbuhler, J., Grabert, H., Phys. Rev. Lett. 87, 126804 (2001)
[45] Egger, R., Gogolin, A.O., Chem. Phys. 281, 447 (2002)
[46] Fontcuberta, A. i Morral, J. Arbiol, J.D. Prades, A. Cirera, J.R. Morante, Adv. Mater. 19, 1347 (2007)
[47] Arbiol, J., Kalache, B., Roca, P. i Cabarrocas, J.R. Morante, A. Fontcuberta i Morral, Nanotechnology 18, 305606 (2007)
[48] Bockrath, M., Cobden, D.H., Lu, J., Rinzler, A.G., Smalley, R.E., Balents, L., McEuen, P.L., Nature 397, 598 (1999)
[49] Yao, Z., Postma, H.W.C., Balents, L., Dekker, C., Nature 402, 273 (1999)
[50] H.W.C. Postma, M. de Jonge, C. Dekker, Phys. Rev. B 62, R10 653 (2000)
[51] Nygard, J., Cobden, D.H., Bockrath, M., McEuen, P.L., Lindelof, P.E., Appl. Phys. A 69, 297 (1999) ; Nygard, J., Cobden, D.H., Bockrath, M., McEuen, P.L., Lindelof, P.E., Appl. Phys. A 84, 6082 (2000)
[52] Haruyama, J., Takesue, I., Sato, Y., Appl. Phys. Lett. 77, 2891 (2000)
[53] Bachtold, A., de Jonge, M., Grove-Rasmussen, K., McEuen, P.L., Buitelaar, M., Schoenenberger, C., Phys. Rev. Lett. 87, 166801 (2001)
[54] Tarkiainen, R., Ahlskog, M., Penttila, J., Roschier, L., Hakonen, P., Paalanen, M., Sonin, E., Phys. Rev. B 64, 195412 (2001)
[55] Kanda, A., Tsukagoshi, K., Aoyagi, Y., Ootuka, Y., Phys. Rev. Lett. 92, 036801 (2004)
[56] Gershenson, M.E., Khavin, Y.B., Mikhalchuk, A.G., Bozler, H.M., Bogdanov, A.L., Phys. Rev. Lett. 79, 725 (1997)
[57] Nazarov, Y.V., Phys. Rev. Lett. 82, 1245 (1999)
[58] Bagrets, D.A., Nazarov, Y.V., Phys. Rev. Lett. 94, 056801 (2005)
[59] Golubev, D.S., Zaikin, A.D., Phys. Rev. B 74, 245329 (2006)
[60] Golubev, D.S., Zaikin, A.D., Phys. Rev. B 70, 165423 (2004)
[61] Panyukov, S.V., Zaikin, A.D., Phys. Rev. Lett. 67, 3168 (1991)
[62] Nazarov, Y.V., Phys. Rev. Lett. 82, 1245 (1999)
[63] Bagrets, D.A., Nazarov, Y.V., Phys. Rev. Lett. 94, 056801 (2005)
[64] G.L. Ingold, Y.V. Nazarov, in Single Charge Tunneling, edited by H. Grabert, M.H. Devoret, NATO ASI Ser. B, Vol. 294 (Plenum Press, New York, 1992), p. 21

Keywords

Conductance of disordered semiconducting nanowires and carbon nanotubes: a chain of quantum dots

  • J.-F. Dayen (a1), T. L. Wade (a1), G. Rizza (a1), D. S. Golubev (a2), C.-S. Cojocaru (a3), D. Pribat (a3), X. Jehl (a4), M. Sanquer (a4) and J.-E. Wegrowe (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed