Skip to main content Accessibility help

Composition determination of off-congruent Li-deficient MgO (5 mol%)-doped LiNbO3 crystals by absorption spectroscopy

  • De-Long Zhang (a1) (a2) (a3), Li Qi (a1) (a2), Ping-Rang Hua (a1) (a2) (a3) and Edwin Yue-Bun Pun (a3)


Off-congruent Li-deficient MgO:LiNbO3 crystals were prepared by carrying out post-grown Li-poor vapor transport equilibration (VTE) treatments on a number of 0.47 mm thick MgO (5 mol% in growth melt or 6 mol% in crystal)-doped, initially congruent LiNbO3 plates at 1100 °C over different durations ranged in 40–395 h. At first, the VTE-induced Li composition reduction was measured as a function of the VTE duration using the gravimetric method. Then, optical absorption spectroscopy was applied to study the crystal composition effects on the fundamental optical absorption edge and OH absorption characteristic parameters including the peaking position, band width, peaking absorption and band area. These crystal composition effects enable one to establish the optical methods used for determination of the crystal composition from the spectroscopic measurements. These optical methods overcome the demerit that the gravimetric method is limited to a specific VTE temperature or crystal thickness, and can be applied to design and produce an MgO-doped crystal with desired Li composition.


Corresponding author


Hide All
[1]Kuroda, A., Kurimura, S., Uesu, Y., Appl. Phys. Lett. 69, 1565 (1996)
[2]Bryan, D.A., Gerson, R., Tomaschke, H.E., Appl. Phys. Lett. 44, 847 (1984)
[3]Cordova-Plaza, A., Fan, T.Y., Digonnet, M.J.F., Byer, R.L., Shaw, H.J., Opt. Lett. 13, 209 (1988)
[4]Lallier, E., Pocholle, J.P., Papuchon, M., De Micheli, M.P., Li, M.J., He, Q., Ostrowsky, D.B., Grezes-Besset, C., Pelletier, E., IEEE J. Quantum Electron. 27, 618 (1991)
[5]Brinkmann, R., Sohler, W., Suche, H., Wersig, C., IEEE J. Quantum Electron. 28, 466 (1992)
[6]Haruna, M., Sewai, H., Nishihara, H., Ikunishi, S., Gozen, T., Tanaka, H., Electron. Lett. 30, 412 (1994)
[7]Becker, Ch., Oesselke, T., Pandavenes, J., Ricken, R., Rochhausen, K., Schreiberg, G., Sohler, W., Suche, H., Wessel, R., Balsamo, S., Montrosset, I., Sciancalepore, D., IEEE J. Sel. Top. Quantum Electron. 6, 101 (2000)
[8]Baumann, I., Brinkmann, R., Dinand, M., Sohler, W., Beckers, L., Buchal, Ch., Fleuster, M., Holzbrecher, H., Paulus, H., Muller, K.H., Gog, Th., Materlik, G., Witte, O., Stolz, H., von der Osten, W., Appl. Physics A 64, 33 (1997)
[9]Zhang, D.L., Hua, P.R., Pun, E.Y.B., J. Appl. Phys. 103, 113513 (2007)
[10]Wöhlecke, M., Corradi, G., Betzler, K., Appl. Phys. B: Lasers Opt. 63, 323 (1996)
[11]Schlarb, U., Klauer, S., Wesselmann, M., Betzler, K., Wöhlecke, M., Appl. Physics A 56, 311 (1993)
[12]Kovács, L., Ruschhaupt, G., Polgár, K., Corradi, G., Wöhlecke, M., Appl. Phys. Lett. 70, 2801 (1997)
[13]Dravecz, G., Kovács, L., Appl. Phys. B: Lasers Opt. 88, 305 (2007)
[14]Polgár, K., Kovács, L., Földvári, I., Cravero, I., Solid State Commun. 59, 375 (1986)
[15]Lengyel, K., Péter, Á., Polgár, K., Kovács, L., Corradi, G., Phys. Stat. Sol. C 2, 171 (2005)
[16]Péter, Á., Polgár, K., Kovács, L., Lengyel, K., J. Cryst. Growth 284, 149 (2005)
[17]Lengyel, K., Kovács, L., Péter, Á., Polgár, K., Corradi, G., Appl. Phys. B: Lasers Opt. 87, 317 (2007)
[18]Bordui, P.F., Norwood, R.G., Jundt, D.H., Fejer, M.M., J. Appl. Phys. 71, 875 (1992)
[19]Iyi, N., Kitamura, K., Yajima, Y., Kimura, S., J. Solid State Chem. 118, 148 (1995)
[20]Liu, J.J., Zhang, W.L., Zhang, G.Y., Phys. Stat. Sol. A 156, 285 (1996)
[21]Zhang, D.L., Zhang, W.J., Zhuang, Y.R., Pun, E.Y.B., Cryst. Growth Des. 7, 1541 (2007)
[22]Nakamura, M., Higuchi, S., Takekawa, S., Terabe, K., Furukawa, Y., Kitamura, K., Jpn J. Appl. Phys. 41, L49 (2002)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed