Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-10T11:57:12.586Z Has data issue: false hasContentIssue false

Composition determination of off-congruent Li-deficient MgO (5 mol%)-doped LiNbO3 crystals by absorption spectroscopy

Published online by Cambridge University Press:  02 December 2011

De-Long Zhang*
Affiliation:
Department of Opto-Electronics and Information Engineering, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, P.R. China Key Laboratory of Opto-Electronics Information Technology, Tianjin University, Ministry of Education, Tianjin 300072, P.R. China Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P.R. China
Li Qi
Affiliation:
Department of Opto-Electronics and Information Engineering, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, P.R. China Key Laboratory of Opto-Electronics Information Technology, Tianjin University, Ministry of Education, Tianjin 300072, P.R. China
Ping-Rang Hua
Affiliation:
Department of Opto-Electronics and Information Engineering, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, P.R. China Key Laboratory of Opto-Electronics Information Technology, Tianjin University, Ministry of Education, Tianjin 300072, P.R. China Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P.R. China
Edwin Yue-Bun Pun
Affiliation:
Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P.R. China
*
Get access

Abstract

Off-congruent Li-deficient MgO:LiNbO3 crystals were prepared by carrying out post-grown Li-poor vapor transport equilibration (VTE) treatments on a number of 0.47 mm thick MgO (5 mol% in growth melt or 6 mol% in crystal)-doped, initially congruent LiNbO3 plates at 1100 °C over different durations ranged in 40–395 h. At first, the VTE-induced Li composition reduction was measured as a function of the VTE duration using the gravimetric method. Then, optical absorption spectroscopy was applied to study the crystal composition effects on the fundamental optical absorption edge and OH absorption characteristic parameters including the peaking position, band width, peaking absorption and band area. These crystal composition effects enable one to establish the optical methods used for determination of the crystal composition from the spectroscopic measurements. These optical methods overcome the demerit that the gravimetric method is limited to a specific VTE temperature or crystal thickness, and can be applied to design and produce an MgO-doped crystal with desired Li composition.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kuroda, A., Kurimura, S., Uesu, Y., Appl. Phys. Lett. 69, 1565 (1996)CrossRef
Bryan, D.A., Gerson, R., Tomaschke, H.E., Appl. Phys. Lett. 44, 847 (1984)CrossRef
Cordova-Plaza, A., Fan, T.Y., Digonnet, M.J.F., Byer, R.L., Shaw, H.J., Opt. Lett. 13, 209 (1988)CrossRef
Lallier, E., Pocholle, J.P., Papuchon, M., De Micheli, M.P., Li, M.J., He, Q., Ostrowsky, D.B., Grezes-Besset, C., Pelletier, E., IEEE J. Quantum Electron. 27, 618 (1991)CrossRef
Brinkmann, R., Sohler, W., Suche, H., Wersig, C., IEEE J. Quantum Electron. 28, 466 (1992)CrossRef
Haruna, M., Sewai, H., Nishihara, H., Ikunishi, S., Gozen, T., Tanaka, H., Electron. Lett. 30, 412 (1994)CrossRef
Becker, Ch., Oesselke, T., Pandavenes, J., Ricken, R., Rochhausen, K., Schreiberg, G., Sohler, W., Suche, H., Wessel, R., Balsamo, S., Montrosset, I., Sciancalepore, D., IEEE J. Sel. Top. Quantum Electron. 6, 101 (2000)CrossRef
Baumann, I., Brinkmann, R., Dinand, M., Sohler, W., Beckers, L., Buchal, Ch., Fleuster, M., Holzbrecher, H., Paulus, H., Muller, K.H., Gog, Th., Materlik, G., Witte, O., Stolz, H., von der Osten, W., Appl. Physics A 64, 33 (1997)CrossRef
Zhang, D.L., Hua, P.R., Pun, E.Y.B., J. Appl. Phys. 103, 113513 (2007)CrossRef
Wöhlecke, M., Corradi, G., Betzler, K., Appl. Phys. B: Lasers Opt. 63, 323 (1996)CrossRef
Schlarb, U., Klauer, S., Wesselmann, M., Betzler, K., Wöhlecke, M., Appl. Physics A 56, 311 (1993)CrossRef
Kovács, L., Ruschhaupt, G., Polgár, K., Corradi, G., Wöhlecke, M., Appl. Phys. Lett. 70, 2801 (1997)CrossRef
Dravecz, G., Kovács, L., Appl. Phys. B: Lasers Opt. 88, 305 (2007)CrossRef
Polgár, K., Kovács, L., Földvári, I., Cravero, I., Solid State Commun. 59, 375 (1986)CrossRef
Lengyel, K., Péter, Á., Polgár, K., Kovács, L., Corradi, G., Phys. Stat. Sol. C 2, 171 (2005)CrossRef
Péter, Á., Polgár, K., Kovács, L., Lengyel, K., J. Cryst. Growth 284, 149 (2005)CrossRef
Lengyel, K., Kovács, L., Péter, Á., Polgár, K., Corradi, G., Appl. Phys. B: Lasers Opt. 87, 317 (2007)CrossRef
Bordui, P.F., Norwood, R.G., Jundt, D.H., Fejer, M.M., J. Appl. Phys. 71, 875 (1992)CrossRef
Iyi, N., Kitamura, K., Yajima, Y., Kimura, S., J. Solid State Chem. 118, 148 (1995)CrossRef
Liu, J.J., Zhang, W.L., Zhang, G.Y., Phys. Stat. Sol. A 156, 285 (1996)CrossRef
Zhang, D.L., Zhang, W.J., Zhuang, Y.R., Pun, E.Y.B., Cryst. Growth Des. 7, 1541 (2007)CrossRef
Nakamura, M., Higuchi, S., Takekawa, S., Terabe, K., Furukawa, Y., Kitamura, K., Jpn J. Appl. Phys. 41, L49 (2002)CrossRef