Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-23T05:56:01.452Z Has data issue: false hasContentIssue false

Comparison of intracellular water content measurements by dark-field imaging and EELS in medium voltage TEM

Published online by Cambridge University Press:  15 September 2000

C. Terryn*
Affiliation:
Laboratoire de Microscopie Électronique, 21 rue Clément Ader, 51685 Reims Cedex 2, France
J. Michel
Affiliation:
Laboratoire de Microscopie Électronique, 21 rue Clément Ader, 51685 Reims Cedex 2, France
L. Kilian
Affiliation:
Laboratoire de Microscopie Électronique, 21 rue Clément Ader, 51685 Reims Cedex 2, France
P. Bonhomme
Affiliation:
Laboratoire de Microscopie Électronique, 21 rue Clément Ader, 51685 Reims Cedex 2, France
G. Balossier
Affiliation:
Laboratoire de Microscopie Électronique, 21 rue Clément Ader, 51685 Reims Cedex 2, France
Get access

Abstract

Knowledge of the water content at the subcellular level is important to evaluate the intracellular concentration of either diffusible or non-diffusible elements in the physiological state measured by the electron microprobe methods. Water content variations in subcellular compartments are directly related to secretion phenomena and to transmembrane exchange processes, which could be attributed to pathophysiological states. In this paper we will describe in details and compare two local water measurement methods using analytical electron microscopy. The first one is based on darkfield imaging. It is applied on freeze-dried biological cryosections; it allows indirect measurement of the water content at the subcellular level from recorded maps of darkfield intensity. The second method uses electron energy loss spectroscopy. It is applied to hydrated biological cryosections. It is based on the differences that appear in the electron energy loss spectra of macromolecular assemblies and vitrified ice in the 0−30 eV range. By a multiple least squares (MLS) fit between an experimental energy loss spectrum and reference spectra of both frozen-hydrated ice and macromolecular assemblies we can deduce directly the local water concentration in biological cryosections at the subcellular level. These two methods are applied to two test specimens: human erythrocytes in plasma, and baker's yeast (Saccharomyses Cerevisiae) cryosections. We compare the water content measurements obtained by these two methods and discuss their advantages and drawbacks.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J. Dubochet, M. Adrian, J.J. Chang, J. Lepault, A.W. Mc Dowal, in Cryotechniques in biological electron microscopy, edited by R.A. Steinbrecht, K. Zierold (Springer-Verlag, Berlin, 1987).
Sun, S.Q., Shi, S.L., Hunt, J., Leapman, R.D., J. Microsc. 177, 18 (1995). CrossRef
Von Zglinicki, T., J. Microsc. 161, 149 (1991). CrossRef
Andrews, S.B., Buchanan, RA., Leapman, R.D., Scanning Microsc. Suppl. 8, 13 (1994).
D. Wagner, Ph.D. thesis, University of Reims, 1993.
Warner, R.R., J. Microsc. 142, 363 (1986). CrossRef
Gupta, B.L., Berrige, M.J., Hall, T.A., Moreon, R.B., J. Exp. Biol. 72, 261 (1978).
Roomans, G.M., J. Electron Microsc. Tech. 9, 19 (1988). CrossRef
Baconnais, S., Zahm, J.M., Kilian, L., Bonhomme, P., Gobillard, D., Perchet, A., Puchelle, E., Balossier, G., J. Microsc. 191, 311 (1998). CrossRef
Gupta, B.L., Hall, T.L., Tissue Cell 13, 623 (1981). CrossRef
T.A. Hall, B.L. Gupta, in Introduction to analytical electron microscopy, edited by J.J. Hren, J.I. Goldstein, D.C. Joy (Plenum Press, New York and London, 1979).
Sauberman, A.J., Beeuwkes III, R., Peters, P.D., J. Cell Biol. 88, 268 (1981). CrossRef
Zs-Nagy, I., Lustyik, G., Bertoni-Freddari, C., Tissue Cell 14, 47 (1982). CrossRef
Marshall, A.T., Scanning Electron Microsc. 2, 335 (1980).
A.T. Marshall, in Cryotechniques in biological electron microscopy, edited by R.A. Steinbrecht, K. Zierold (Springer Verlag, Berlin, 1987).
R. Rick, A. Dörge, K. Gehring, R. Bauer, K. Thureau, in Microbeam Analysis in Biology, edited by C.P. Lechene, R.R. Warner (Academic Press, New York, 1979).
Halloran, B.P., Kirk, R.G., Spurr, A.R., Ultramicroscopy 3, 175 (1978). CrossRef
Linders, P.W.J., Stols, A.L.H., Van der Vorstenbosch, R.A., Stadhouders, A.M., Scanning Electron Microsc. 4, 1603 (1982).
Linders, P.W.J., Van der Vorstenbosch, R.A., Smits, H.T.J., Stols, A.L.H., Stadhouders, A.M., Anal. Chim. Acta 160, 57 (1984). CrossRef
Hosoi, J., Oikawa, T., Inoue, M., Kokubo, Y., Hama, K., Ultramicroscopy 7, 147 (1981). CrossRef
Leapman, R.D., Fiori, C.E., Swyt, C.R., J. Microsc. 133, 239 (1984). CrossRef
Zeitler, E., Bahr, G.F., J. Appl. Phys. 33, 847 (1962). CrossRef
Zierold, K., Scanning Electron Microsc. 2, 713 (1986).
Carlemalm, E., Colliex, C., Kellenberger, E., Adv. Electron. Electron Phys. 63, 269 (1985). CrossRef
Colliex, C., Jeanguillaume, C., Mory, C., J. Ultrastruct. Res. 88, 177 (1984). CrossRef
Sun, S.Q., Shi, S.L., Leapman, R.D., Ultramicroscopy 50, 127 (1993). CrossRef
D. Gobillard, J. Michel, S. Minon-Baconnais, P. Bonhomme, G. Balossier, in Proceeding of EUREM, Dublin, 1996, edited by CESM.
D. Gobillard, J. Michel, P. Bonhomme, G. Balossier, in Proceeding of colloque SFME, Nancy, 1997, edited by SFME.
R.F. Egerton, in Electron energy loss spectroscopy in the electron microscopy (Plenum Publishing Corporation, New York, 1986).
Egerton, R.F., Ultramicroscopy 10, 297 (1982). CrossRef
Balossier, G., Thomas, X., Michel, J., Wagner, D., Bonhomme, P., Puchelle, E., Ploton, D., Bonhomme, A., Pinon, J.M., Microsc. Microanal. Microstruct. 2, 531 (1991). CrossRef
Dubochet, J., Adrian, M., Chang, J.J., Homo, J.C., Lepault, J., McDowall, A.W., Schultz, P., Q. Rev. Biophys. 21, 129 (1988). CrossRef
M.S. Isaacson, in Principles and techniques of electron microscopy, biological applications, edited by M.A. Hayat (Van Nostrand Reinhold Co, New-York, 1977).
Adrian, M., Dubochet, J., Lepault, J., Mc Dowall, A.W., Nature 308, 32 (1984). CrossRef
D.A. Kopf, A. LeFurgey, L.A. Hawkey, B.L. Craig, P. Ingram, in Microbeam analysis, edited by A.D. Romig, W.F. Chambers (San Francisco, 1986).
Spence, J.C.H., Ultramicroscopy 4, 9 (1979). CrossRef
Parravicini, G.P., Resca, L., Phys. Rev. B 8, 3009 (1973). APS Link not valid for this citation CrossRef
Isaacson, M., J. Chem. Phys. 56, 1813 (1972). CrossRef
Johnson, D., Radiat. Res. 49, 63 (1972). CrossRef
P.R. Bevington, Data reduction and error analysis for the physical sciences (Mc Graw-Hill Book Company, New-York, 1969).
J. Michel, C. Terryn, P. Bonhomme, G. Balossier, in Proceedings of 3 e colloque SFµ Palaiseau, 1999, edited by SFµ.
S. Silbernagle, A. Despopoulos, Atlas de poche de physiologie (Flammarion médecine-sciences, 1985).
K. Zierold, Methods in microbiology (Academic Press, London, 1988).
Shi, S., Sun, S., Andrews, S.B., Leapman, R.D., Microsc. Res. Tech. 33, 241 (1996). 3.0.CO;2-T>CrossRef
B. Jouffrey, J. Sevely, Rev. Phys. Appl., 101 (1976).