Skip to main content Accessibility help
×
Home

A comparative study of the field emission properties of aligned carbon nanostructures films, from carbon nanotubes to diamond

  • F. Le Normand (a1), C. S. Cojocaru (a1), C. Fleaca (a1), J. Q. Li (a1), P. Vincent (a2), G. Pirio (a2), L. Gangloff (a2), Y. Nedellec (a2) and P. Legagneux (a2)...

Abstract

The electron field emission properties of different graphitic and diamond-like nanostructures films are compared. They are prepared in the same CVD chamber on SiO2/Si(100) and Si(100) flat surfaces, respectively. These nanostructures are thoroughly characterized by scanning electron emission (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). Films of dense aligned carbon nanotubes by far display the lowest threshold fields around few V/ $\mu $ m and the largest emission currents. Carbon nanofibers, with platelet arrangement of the graphitic planes parallel to the substrate, exhibit higher emission thresholds around 10 V/ $\mu $ m. Diamond nanostructures, either modified through ammonia incorporation within the gas phase or not, exhibit the largest emission threshold around 25 V/ $\mu $ m. The high enhancement factors, deduced from the Fowler-Nordheim plots, can explain the low emission thresholds whereas limitations to the electron transport ever occur through different processes (i) surface modifications of the surface, as the transformation of the SiO2 barrier layer into SiN x in the presence of ammonia evidenced by XPS; (ii) different orientation of the graphitic basal planes relative to the direction of electron transport (carbon nanofiber) and (iii) presence of a graphitic nest at the interface of the carbon nanostructure and the substrate, observed when catalyst is deposited through mild evaporation.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A comparative study of the field emission properties of aligned carbon nanostructures films, from carbon nanotubes to diamond
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A comparative study of the field emission properties of aligned carbon nanostructures films, from carbon nanotubes to diamond
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A comparative study of the field emission properties of aligned carbon nanostructures films, from carbon nanotubes to diamond
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
[1] Bonard, J.M., Kind, H., Stockli, T., Nilsson, L.-O., Solid State Electron. 45, 893 (2001)
[2] Fransen, M.J., van Rooy, T.L., Kruit, P., Appl. Surf. Sci. 146, 312 (1999)
[3] De Heer, W.A., Bonard, J.M., Z. Phys. D 40, 418 (1997)
[4] Bonard, J.M., Stockli, T., Maier, F., de Heer, W.A., Chatelain, A., Salvetat, J.P., Forro, L., Phys. Rev. Lett. 81, 1441 (1998)
[5] Purcell, S.T., Vincent, P., Journet, C., Binh, V.T., Phys. Rev. Lett. 88, 105502 (2002)
[6] Groening, O., Kuttel, O.M., Emmenegger, C., Groening, P., Schlapbach, L., J. Vac. Sci. Technol. B 18, 665 (2000)
[7] V.V. Zhirnov, O. Groning, O.M. Kuttel, A. Alimova, P.Y. Detkov, P.I. Belobrov, E. Maillard-Schaller, L. Schlapbach, J. Vac. Sci. Technol. B 17, 666, (1999)
[8] Obraztsov, A.N., Volkov, A.P., Pavlovskii, I. Yu., Rakova, E.V., Nagovitsyn, S.P., J. Electrochem. Soc. 145, 2572 (1998)
[9] Obraztsov, A.N., Volkov, A.P., Pavlovskii, I. Yu, JETP Lett. 68, 59 (1998)
[10] T.W. Ebbesen, in Carbon Nanotubes: Preparation and Properties, edited by T.W. Ebbesen (CRC Press, Boca Raton, 1997)
[11] Ajayan, P.M., Chem. Rev. 99, 1787 (1999)
[12] Zhu, W., Bower, C., Zhou, O., Kochanski, G., Jin, S., Appl. Phys. Lett. 75, 873 (1999)
[13] Zhirnov, V.V., Hren, J.J., MRS Bull. 09, 42 (1998)
[14] Geis, M.W., Twichell, J.C., Lyszczarz, T.M., J. Vac. Sci. Technol. B 14, 2060 (1996)
[15] Groning, O., Nilsson, L.O., Groning, P., Schlapbach, L., Solid State Electron. 45, 929 (2001)
[16] Larijani, M., Cojocaru, C.S., Misra, D.S., Singh, M.K., Veis, P., Le Normand, F., Diam. Relat. Mater. 13, 270 (2004)
[17] Cojocaru, C.S., Le Normand, F., J. Nanosci. Nanotechnol. 6, 1 (2006)
[18] Cojocaru, C.S., Le Normand, F., Thin Solid Films 515, 53 (2006)
[19] Chen, Y., Wang, Z.L., Yin, Y.S., Johnson, D.J., Prince, R.H., Chem. Phys. Lett. 272, 178 (1997)
[20] Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P., Provencio, P.N., Science 282, 1105 (1998)
[21] Chen, Y., Ye, Y., Guo, L., Patel, S., Shaw, D.T., Appl. Phys. Lett. 73, 2119 (1998)
[22] Huang, Z.P., Xu, J.W., Ren, Z.F., Wang, J.H., Siegal, M.P., Provencio, P.N., Appl. Phys. Lett. 73, 3845 (1998)
[23] Chen, Y., Guo, L., Patel, S., Shaw, D.T., J. Mater. Sci. 35, 5517 (2000)
[24] Han, J.H., Yang, W.S., Yoo, J.B., Park, C.Y., Surf. Coat. Tech. 131, 93 (2000)
[25] Han, J.H., Yang, W.S., Yoo, J.B., Park, C.Y., J. Appl. Phys. 88, 7363 (2000)
[26] Hayashi, Y., Negishi, T., Nishino, S., J. Vac. Sci. Technol. A 19, 1796 (2001)
[27] Huang, Z.P., Wen, J.G., Sennett, M., Gibson, H., Ren, Z.F., Wang, D.Z., Appl. Phys. A 74, 387 (2002)
[28] Ch. Taschner, F. Pacal, A. Leonhardt, P. Spatenka, K. Bartsch, A. Graff, R. Kaltofen, Surf. Coat. Tech. 174, 81 (2003)
[29] Cruden, B.A., Meyyappan, M., Ye, Q., Cassell, A., J. Appl. Phys. 94, 4070 (2003)
[30] Shimizu, Y., Sasaki, T., Kodaira, T., Kawaguchi, K., Terashima, K., Koshizaki, N., Diam. Relat. Mater. 14, 11 (2005)
[31] Han, J.H., Kim, H.J., Yang, C.W., Yang, W.S., Song, Y.H., Nam, K.S., Yoo, J.B., Park, C.Y., Mat. Sci. Eng. C 16, 65 (2001)
[32] Cojocaru, C.S., Kim, D., Pribat, D., Bouree, J.E., Thin Solid Films 501, 227 (2006)
[33] B. Vigolo, C.S. Cojocaru, J. Faerber, J. Arabski, F. Le Normand, J. Nanosci. Nanotechnol., to be published
[34] Arnault, J.C., Demuynck, L., Speisser, C., Le Normand, F., Eur. J. Phys. Chem. B 11, 327 (1999)
[35] Pirio, G., Legagneux, P., Pribat, D., Teo, K.B.K., Chhowalla, M., Amaratunga, G.A.J., Milne, W.I., Nanotechnology 13, 1 (2002)
[36] J.M. Bonard, in Understanding carbon nanotubes. From basics to application, edited by A. Loiseau et al. (Springer, Berlin 2006)
[37] Brodie, M., Spindt, J., J. Appl. Phys. 47, 5248 (1976)
[38] J. Mulder, in Handbook of X-ray photoelectron spectroscopy (Perkin Elmer, 1982), p. 147
[39] Wei, Y., Xie, C., Dean, K.A., Coll, B.F., Appl. Phys. Lett. 79, 4527 (2001)
[40] Wang, Z.L., Gao, R.P., De Heer, W.A., Poncharal, P., Appl. Phys. Lett. 80, 856 (2002)
[41] Utsumi, T., IEEE T. Electron Dev. 38, 2276 (1991)
[42] P. Bernier, S. Lefrant, Le carbone dans tous ses états (Gordon and Breach Science Publ., Amsterdam, 1997), p. 24
[43] Z.Q. Li, M. Gulas, B. Prevot, C.S. Cojocaru, F. Le Normand (in preparation)
[44] Jin, S., Moustakas, T.D., Appl. Phys. Lett. 65, 403 (1994)
[45] Locher, R., Wild, C., Herres, N., Behr, D., Koidl, P., Appl. Phys. Lett. 65, 34 (1994)
[46] Cao, G.Z., Schermer, J.J., Van Enckevort, W.J.P., Elst, W.A.L.M., Giling, L.J., J. Appl. Phys. 79, 1357 (1996)

Keywords

A comparative study of the field emission properties of aligned carbon nanostructures films, from carbon nanotubes to diamond

  • F. Le Normand (a1), C. S. Cojocaru (a1), C. Fleaca (a1), J. Q. Li (a1), P. Vincent (a2), G. Pirio (a2), L. Gangloff (a2), Y. Nedellec (a2) and P. Legagneux (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed