Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T08:02:50.112Z Has data issue: false hasContentIssue false

Collision dynamics of energetic carbon ions impinging on single-walled carbon nanotubes

Published online by Cambridge University Press:  03 October 2013

Chao Zhang
Affiliation:
The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, P.R. China Beijing Radiation Center, Beijing 100875, P.R. China
Fei Mao
Affiliation:
The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, P.R. China Beijing Radiation Center, Beijing 100875, P.R. China
Feng-Shou Zhang*
Affiliation:
The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, P.R. China Beijing Radiation Center, Beijing 100875, P.R. China Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, P.R. China
*
Get access

Abstract

By employing atomistic simulations based on an empirical potential, we study the collision dynamics of low-energy carbon ions impinging on single-walled carbon nanotubes. We investigate the energy transferred from the incident carbon ions to the target atoms in the nanotubes. We find that the lowest incident energy needed for the primary knock-on atom to be permanently displaced from its original location is 18 eV, and for the secondary knock-on atom to escape out of the nanotube is estimated to be 28 eV. Moreover, we find that the incident threshold energy strongly depends on the diameter of the nanotube and its chirality, and saturates towards the corresponding value in graphene as the tube diameter increases. Furthermore, a single vacancy and an adatom defects are obtained after optimization using the ab-initio calculations.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Iijima, S., Nature 354, 56 (1991)CrossRef
Tombler, N.W., Zhou, C., Alexseyev, L., Kong, J., Dai, H., Liu, L., Jayanthi, C.S., Tand, M., Wu, S.Y., Nature 405, 769 (2000)
Izard, N., Gaufrès, E., Le Roux, X., Kazaoui, S., Murakami, Y., Marris-Morini, D., Cassan, E., Maruyama, S., Vivien, L., Eur. Phys. J. Appl. Phys. 55, 20401 (2011)CrossRef
Soltani, P., Narenjbon, O.P., Taherian, M.M., Farshidianfar, A., Eur. Phys. J. Appl. Phys. 59, 10403 (2012)CrossRef
McBride, J.W., Yunus, E.M., Spearing, S.M., Eur. Phys. J. Appl. Phys. 50, 12904 (2010)CrossRef
Du, X.J., Zhang, J.M., Wang, S.F., Xu, K.W., Ji, V., Eur. Phys. J. B 72, 119 (2009)CrossRef
Luo, J.L., Duan, Z., Xian, G., Li, Q., Zhao, T., Eur. Phys. J. Appl. Phys. 53, 30402 (2011)CrossRef
Baughman, R.H., Zakhidov, A.A., de Heer, W.A., Science 297, 187 (2002)CrossRef
Huang, J.Y., Chen, S., Ren, Z.F., Wang, Z., Kempa, K., Naughton, M.J., Chen, G., Dresselhaus, M.S., Phys. Rev. Lett. 98, 185501 (2007)CrossRef
Stone, A.J., Wales, D.J., Chem. Phys. Lett. 128, 501 (1986)CrossRef
Lusk, M.T., Carr, L.D., Phys. Rev. Lett. 100, 175503 (2008)CrossRef
Gómez-Navarro, C., De Pablo, P.J., Gómez-Herrero, J., Biel, B., Garcia-Vidal, F.J., Rubio, A., Flores, F., Nature Mater. 4, 534 (2005)CrossRef
Bockrath, M., Liang, W., Bozovic, D., Hafner, J.H., Lieber, C.M., Tinkham, M., Park, H., Science 291, 283 (2001)CrossRef
Suzuki, M., Ishibashi, K., Toratani, K., Tsuya, D., Aoyagi, Y., Appl. Phys. Lett. 81, 2273 (2002)CrossRef
Pregler, S.K., Sinnott, S.B., Phys. Rev. B 73, 224106 (2006)CrossRef
Krasheninnikov, A.V., Banhart, F., Li, J.X., Foster, A.S., Nieminen, R.M., Phys. Rev. B 72, 125428 (2005)CrossRef
Ziegler, J.F., Biersack, J.P., Littmark, U., The Stopping and Range of Ions in Matter (Pergamon, New York, 1985)CrossRefGoogle Scholar
Krasheninnikov, A.V., Nordlund, K., J. Appl. Phys. 107, 071301 (2010)CrossRef
Zhao, S.J., Xue, J.M., Wang, Y.G., Yan, S., Appl. Phys. A 12, 6955 (2012)
Politzer, P., Seminario, J., Bolduc, P., Chem. Phys. Lett. 158, 463 (1989)CrossRef
Takai, T., Lee, C., Halicioglu, T., Tiller, W.A., J. Phys. Chem. 94, 4480 (1990)CrossRef
Tersoff, J., Phys. Rev. Lett. 61, 2879 (1988)CrossRef
Brenner, D.W., Phys. Rev. B 42, 9458 (1990)CrossRef
Wei, Y.J., Wu, J.T., Yin, H.Q., Shi, X.H., Yang, R.G., Dresselhaus, M., Nature Mater. 11, 759 (2012)CrossRef
Zhang, C., Mao, F., Zhang, F.S., Zhang, Y., Chem. Phys. Lett. 541, 92 (2012)CrossRef
Mao, F., Zhang, C., Zhang, F.S., Zhang, Y., Chin. Phys. Lett. 29, 076101 (2012)CrossRef
Wang, Z.X., Ke, X.Z., Zhu, Z.Y., Zhang, F.S., Ruan, M.L., Yang, J.Q., Phys. Rev. B 61, R2472 (2000)CrossRef
Crespi, V.H., Chopra, N.G., Cohen, M.L., Zettl, A., Louie, S.G., Phys. Rev. B 54, 5927 (1996)CrossRef
Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C., Phys. Rev. B 46, 6671 (1992)CrossRef
Hariharan, P.C., Pople, J.A., Chem. Phys. Lett. 16, 217 (1972)CrossRef
Bellido, E.P., Seminario, J.M., J. Phys. Chem. C 116, 4044 (2012)CrossRef
Rodriguez-Manzo, J.A., Banhart, F., Nano Lett. 9, 2285 (2009)CrossRef