Skip to main content Accessibility help
×
Home

Characteristic analysis and shape optimal design of a ring-type traveling wave ultrasonic motor

  • Jong-Suk Ro (a1), Kyung-Pyo Yi (a2), Tae-Kyung Chung (a3) and Hyun-Kyo Jung (a2)

Abstract

The contact mechanism should be analyzed for an estimation of the performance of a traveling wave ultra-sonic motor (TWUSM), because the operation of this type of motor depends on the frictional force between the rotor and the stator. However, the nonlinearity of the contact mechanism of the TWUSM makes it difficult to proposed a proper contact model, a characteristic analysis method and an optimal design method. To address these problems, a characteristic analysis and optimal design method using a cylindrical dynamic contact model (CDCM), an analytical method, a numerical method and an evolutionary strategy algorithm (ESA) is proposed in this research. The feasibility and usefulness of the proposed characteristic analysis and optimal design method are verified through experimental data. Furthermore, the importance of the shape of the teeth and the reason for the improvement of motor performances by the chamfering at the teeth are proposed and verified in this paper.

Copyright

Corresponding author

References

Hide All
[1] Sashida, T., Kenjo, T., An Introduction to Ultrasonic Motors (Clarendon Press, 1993)
[2] Lu, X., Hu, J., Yang, L., Zhao, C., Sens. Actuat. A Phys. 189, 504 (2010)
[3] Uchino, K., Giniwicz, J.R., Micromechatronics (Marcel Dekker, Inc. New York/Basel, 2002), Chap. 6
[4] Shi, Y., Zhao, C., Huang, W., Sens. Actuat. A Phys. 161, 205 (2010)
[5] Shiyang, L., Ming, Y., Sens. Actuat. A Phys. 164, 107 (2010)
[6] Liu, Y., Chen, W., Liu, J., Shi, S., Sens. Actuat. A Phys. 161, 158 (2010)
[7] Smith, G.L., Rudy, R.Q., Polcawich, R.G., DeVoe, D.L., Sens. Actuat. A Phys. 188, 305 (2012)
[8] Borodinas, S., Vasiljev, P., Mazeika, D., Sens. Actuat. A Phys. (2010), http://dx.doi.org/10.1016/j.sna.2012.09.010
[9] Iula, A., Corbo, A., Pappalardo, M., Sens. Actuat. A Phys. 160, 94 (2010)
[10] Maeno, T., Tsukimoto, T., Miyake, A., IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 39, 668 (1992)
[11] Liu, Y., Chen, W., Feng, P., Liu, J., Sens. Actuat. A Phys. 180, 113 (2012)
[12] Flynn, A.M., Tavrow, L.S., Bart, S.F., Brooks, R.A., Ehrlich, D.J., IEEE/ASME J. Microelectromech. Syst. 7, 286 (1992)
[13] Chunsheng, Z., Ultrasonic Motors: Technologies and Applications, 1st edn. (Science Press, Beijing, 2011)
[14] Flynny, A.M., Smart Mater. Struc. 7, 286 (1998)
[15] Pang, Y., Yang, M., Li, S., Sens. Actuat. A Phys. 173, 202 (2012)
[16] Zhao, C., Li, Z., Huang, W., Sens. Actuat. A Phys. 121, 494 (2005)
[17] Zhang, J.-T., Zhu, H., Zhou, S.-Q., Zhao, C.-S., Sens. Actuat. A Phys. 59, 11 (2012)
[18] Lim, J.P., Rho, J.S., Yi, K.P., Seo, J.M., Jung, H.K., Smart Mater. Struc. 18, 115024 (2009)
[19] Qu, J., Sun, F., Zhao, C., Ultrasonic. 45, 22 (2006)
[20] Qu, J., Zhou, T., Ultrasonic. 41, 561 (2003)
[21] Wallaschek, J., Smart Mater. Struc. 7, 369 (1998)
[22] Wallaschek, J., J. Intell. Mater. Syst. Struct. 6, 71 (1995)
[23] Cao, X., Wallaschek, J., Contact Mechanics II (WIT PRESS, Southampton, 1998) pp. 5361
[24] Stork, H., Wallaschek, J., Int. J. Non-Linear Mech. 38, 143 (2003)
[25] Rho, J.-S., Kim, B.-J., Lee, C.-H., Joo, H.-W., Jung, H.-K., IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 52, 2054 (2005)
[26] Nakamura, K. et al., IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 38, 481 (1991)
[27] Hirata, H., Ueha, S., IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 40, 402 (1993)
[28] Hirata, H., Ueha, S., IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 42, 225 (1995)
[29] Zharii, O.Y., Acoust. Phys. 39, 249 (1993)
[30] Zharii, O.Y., J. Appl. Mech. 63, 15 (1996)
[31] Flynn, A.M., PhD Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 1995
[32] Hagood, N.W., McFarland, A.J., IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 42, 210 (1995)
[33] Schmidt, J.P., Hagedorn, P., Bingqi, M., Internat. J. Non-Linear Mech. 31, 915 (1996)
[34] Hagedorn, P., Sattel, T., Speziari, D., Schmidt, J., Diana, G., Smart Mater. Struc. 7, 352 (1998)
[35] Biet, M., Giraud, F., Lemaire-Semail, B., Eur. Phys. J. Appl. Phys. 43, 123 (2008)
[36] Budinger, M., Rouchon, J.-F., Nogarede, B., Eur. Phys. J. Appl. Phys. 25, 57 (2004)
[37] Kwon, K., Loh, B.-G., Lee, D.-R., Eur. Phys. J. Appl. Phys. 40, 343 (2007)
[38] Giraud, F., Lemaire-Semail, B., Eur. Phys. J. Appl. Phys. 21, 151 (2003)
[39] Monturet, V., Nogarede, B., Eur. Phys. J. Appl. Phys. 17, 107 (2002)
[40] Pigache, F., Giraud, F., Lemaire-Semail, B., Eur. Phys. J. Appl. Phys. 34, 55 (2006)
[41] Zhang, J., Zhu, H., Zhao, C., Sens. Actuat. A Phys. 163, 510 (2010)
[42] Li, S., Yang, M., Sens. Actuat. A Phys. 148, 285 (2008)
[43] Norton, R.L., Machine Design an Integrated Approach, 3rd edn. (Pearson Prentice Hall, Pearson Education. Inc. 2006), Chap. 6
[44] Abido, M.A., Abdel-Magid, Y.L., IEEE Trans. Energy Conver. 17, 429 (2002)

Characteristic analysis and shape optimal design of a ring-type traveling wave ultrasonic motor

  • Jong-Suk Ro (a1), Kyung-Pyo Yi (a2), Tae-Kyung Chung (a3) and Hyun-Kyo Jung (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed