Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-25T01:33:17.926Z Has data issue: false hasContentIssue false

Capturing EELS in the reciprocal space

Published online by Cambridge University Press:  20 June 2011

C. Hébert*
Affiliation:
Institute of Condensed Matter Physics, École Polytechnique Fédérale de Lausanne, Switzerland Interdisciplinary Center for Electron Microscopy, École Polytechnique Fédérale Lausanne, Switzerland
A. Alkauskas
Affiliation:
Institute of Condensed Matter Physics, École Polytechnique Fédérale de Lausanne, Switzerland Interdisciplinary Center for Electron Microscopy, École Polytechnique Fédérale Lausanne, Switzerland
S. Löffler
Affiliation:
Institute of Solid State Physics, Vienna University of Technology, Austria
B. Jouffrey
Affiliation:
LMSS-Mat, CNRS-UMR 8579, École Centrale Paris, Châtenay-Malabry, France
P. Schattschneider
Affiliation:
LMSS-Mat, CNRS-UMR 8579, École Centrale Paris, Châtenay-Malabry, France University Service Centre for Transmission Electron Microscopy, Vienna University of Technology, Austria

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this work two aspects of momentum-dependent electron energy loss spectrometry are studied, both in the core-loss and in the low-loss region. In the case of core losses, we focus on the demonstration and the interpretation of an unexpected non-Lorentzian behavior in the angular part of the double-differential scattering cross-section. The silicon L3 edge is taken as an example. Using calculations we show that the non-Lorentzian behavior is due to a change in the wavefunction overlap between the initial and the final states. In the case of low losses, we first analyze the momentum-dependent loss functions of coinage metals Cu, Ag, and Au. We then demonstrate how advanced electronic structure calculations can be used to build simple models for the dielectric function that can then serve as a basis for the calculation of more complicated sample geometries.

Type
Research Article
Copyright
© EDP Sciences, 2011

References

Egerton, R.F., Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd edn. (Plenum Press, New York, 1996)CrossRefGoogle Scholar
Zaluzec, N.J., Ito, Y., Cook, R.E., Miller, D.J., Microsc. Microanal. 12, 978 (2006)CrossRef
Waidmann, S., Knupfer, M., Arnold, B., Fink, J., Fleszar, A., Hanke, W., Phys. Rev. B 61, 10149 (2000)CrossRef
Radtke, G., Ultramicroscopy 108, 893 (2008)CrossRef
Radtke, G., Botton, G.A., Verbeeck, J., Ultramicroscopy 106, 1082 (2006)CrossRef
Witte, C., Zaluzec, N.J., Allen, L.J., Ultramicroscopy 110, 1390 (2010)CrossRef
Klie, R.F., Cooley, L.D., Zhu, Y., Microsc. Microanal. 10, 838 (2004)CrossRef
Su, D.S., Hébert, C., Willinger, M., Schlögl, R., Micron 34, 227 (2003)CrossRef
Zhang, J., Su, D., Zhang, A., Wang, D., Schlögl, R., Hébert, C., Angew. Chem. Int. Ed. 46, 7319 (2007)CrossRef
Krivanek, >O.L., Disko, M.M., Taftø, J., Spence, J.C.H., Ultramicroscopy 9, 249 (1982)CrossRef
Schattschneider, P., Rubino, S., Hébert, C., Rusz, J., Kuneš, J., Novák, P., Carlino, E., Fibrizioli, M., Panaccione, G., Rossi, G., Nature (London) 441, 486 (2006)CrossRef
Schattschneider, P., Nelhiebel, M., Souchay, H., Jouffrey, B., Micron 31, 333 (2000)CrossRef
Saldin, D.K., Rez, P., Philos. Mag. B 55, 481489 (1987)
Knippelmeyer, R., Wahlbring, P., Kohl, H., Ultramicroscopy 68, 25 (1997)CrossRef
Stöger-Pollach, M., Micron 39, 1092 (2008)CrossRef
Loffler, S., Ennen, I., Tian, F., Schattschneider, P., Jaouen, N., Ultramicroscopy (2011 (in press), DOI: 10.1016/j.ultramic.2011.03.006
Auerhammer, J.M., Rez, P., Phys. Rev. B 40, 2024 (1989)CrossRef
Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., Luitz, J., Wien2k, an augmented plane wave + local orbitals program for calculating crystal properties (Techn. Universitat Wien, Austria, 2001), http://www.wien2k.atGoogle Scholar
Löffler, S., Schattschneider, P., Ultramicroscopy 110, 831 (2010)CrossRef
Slater, J.C., Phys. Rev. 36, 57 (1930)CrossRef
Pines, D., Elementary Excitations in Solids (W.A. Benjamin, Inc., New York, 1964)Google Scholar
Quang, A.A., Eguiluz, A.G., Phys. Rev. Lett. 70, 3955 (1993)CrossRef
Onida, G., Reining, L., Rubio, A., Rev. Mod. Phys. 74, 601 (2002)CrossRef
Alkauskas, A., Schneider, S.D., Sagmeister, S., Ambrosch-Draxl, C., Hébert, C., in preparation
Sagmeister, S., Ambrosch-Draxl, C., Phys. Chem. Chem. Phys. 11, 4451 (2009)CrossRef
Ambrosch-Draxl, C. et al., http://exciting-code.org
Perdew, J.P., Burke, K., Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996)CrossRef
Werner, W.S.M., Went, M.R., Vos, M., Glantschnig, K., Ambrosch-Draxl, C., Phys. Rev. B 77, 161404 (2008)CrossRef
Werner, W.S.M., Glantschnig, K., Ambrosch-Draxl, C., J. Phys. Chem. Ref. Data 38, 1013 (2009)CrossRef
Alkauskas, A., Schneider, S.D., Sagmeister, S., Ambrosch-Draxl, C., Hébert, C., Ultramicroscopy 110, 1081 (2010)CrossRef
Campillo, I., Rubio, A., Pitarke, J.M., Phys. Rev. B 59, 12188 (1999)CrossRef
Schülke, W., Nagasawa, H., Mourikis, S., Lanzki, P., Phys. Rev. B 33, 6744 (1986)CrossRef
Schneider, S.D. et al., in preparation
Cazalilla, M.A., Dolado, J.S., Rubio, A., Echenique, P.M., Phys. Rev. B 61, 8033 (2000)CrossRef
Marini, A., Del Sole, R., Onida, G., Phys. Rev. B 66, 115101 (2002)CrossRef
Otto, A., Petri, E., Solid State Commun. 20, 23 (1976)CrossRef
Zacharias, P., Kliewer, K.L., Solid State Commun. 18, 23 (1976)CrossRef
Ritchie, R.H., Phys. Rev. 106, 874 (1957)CrossRef
Liebsch, A., Phys. Rev. Lett. 71, 145 (1993)CrossRef
García de Abajo, F.J., Rev. Mod. Phys. 82, 209 (2010)CrossRef
Nelayah, J., Kociak, M., Stephan, O., García de Abajo, F.J., Tence, M., Henrard, L., Taverna, D., Pastoriza- Santos, I., Liz-Marzan, L.M., Colliex, C., Nat. Phys. 3, 348 (2007)CrossRef
Schaffer, B., Riegler, K., Kothleitner, G., Grogger, W., Hofer, F., Micron 40, 269 (2009)CrossRef