Skip to main content Accessibility help
×
Home

A broadband omnidirectional absorber based on a hetero-structure composed of epsilon-negative material and mu-negative material

  • Jian-Dong Liu (a1), Shao-Bin Liu (a1), Xiang-Kun Kong (a1) (a2) and Yi Dai (a1)

Abstract

A broadband omnidirectional absorber which is realized by heterostructures containing a collision plasma layer and a zero −  mirror is theoretically investigated. A collision plasma layer and an appropriate dielectric layer are put on the top of the PC. It is shown to absorb roughly 70% of all available electromagnetic wave in a relative omnidirectional absorption band width 244 MHz. The absorption band edge of the PC is influenced by the range of the reflection band gap. Meanwhile, the absorption range for the transverse magnetic (TM) wave decreases at large incident angle. Compared with some previous designs, our proposed structure has a relative flatter total absorption spectrum over a broad microwave frequency range and using a zero −  gap as a mirror is insensitive to the incident angle. This kind of heterostructure offers additional opportunities to design novel optoelectronic devices.

Copyright

Corresponding author

References

Hide All
[1] Yang, Z.P. et al., Appl. Opt. 50, 1850 (2011)
[2] Garcia-Vidal, F.J., Nat. Photon. 2, 215 (2008)
[3] Wu, N. et al., JOSA B 30, 1161 (2013)
[4] Feng, Q. et al., Opt. Lett. 37, 2133 (2012)
[5] Ma, Y. et al., Opt. Lett. 36, 945 (2011)
[6] Xiong, H. et al., J. Appl. Phys. 114, 064109 (2013)
[7] Popov, E., Enoch, S., Bonod, N., Opt. Express 17, 6770 (2009)
[8] Zhang, B. et al., Opt. Express 19, 15221 (2011)
[9] Pu, M. et al., Opt. Express 19, 17413 (2011)
[10] Barnes, W.L., Dereux, A., Ebbesen, T.W., Nature 424, 824 (2003)
[11] Wang, G., Lu, H., Liu, X., Opt. Express 20, 20902 (2012)
[12] Wang, G., Lu, H., Liu, X., Appl. Phys. Lett. 101, 013111 (2012)
[13] Gong, Y. et al., Opt. Express 19, 9759 (2011)
[14] Zhang, Z. et al., JOSA B 27, 909 (2010)
[15] Gong, Y. et al., Opt. Express 19, 10193 (2011)
[16] Zhou, J., Jin, L., Pun, E.Y.B., Opt. Lett. 37, 2613 (2012)
[17] Du, G. et al., JOSA B 27, 1757 (2010)
[18] Kong, X. et al., J. Electromagn. Waves Appl. 27, 945 (2013)
[19] Du, G., Zhang, L., Jiang, H., J. Appl. Phys. 109, 063525 (2011)
[20] Li, J. et al., Phys. Rev. Lett. 90, 083901 (2003)
[21] Shadrivov, I.V., Sukhorukov, A.A., Kivshar, Y.S., Appl. Phys. Lett. 82, 3820 (2003)
[22] Eleftheriades, G.V., Iyer, A.K., Kremer, P.C., IEEE Trans. Microwave Theor. Tech. 50, 2702 (2002)
[23] Alù, A., Engheta, N., IEEE Trans. Antennas Propag. 51, 2558 (2003)
[24] Atwater, H.A., Polman, A., Nat. Mater. 9, 205 (2010)
[25] Watts, C.M., Liu, X., Padilla, W.J., Adv. Mat. 24, OP98 (2012)
[26] Bonod, N. et al., Opt. Express 16, 15431 (2008)
[27] Le Perchec, J. et al., Phys. Rev. Lett. 100, 066408 (2008)
[28] Teperik, T.V. et al., Nat. Photon. 2, 299 (2008)
[29] Hao, J. et al., Appl. Phys. Lett. 96, 251104 (2010)
[30] Liu, N. et al., Nano Lett. 10, 2342 (2010)
[31] Zhou, H. et al., Progress Electromagn. Res. 119, 449 (2011)
[32] Berenger, J.P., J. Comput. Phys. 114, 185 (1994)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed