Skip to main content Accessibility help
×
Home

Analysis of transconductance characteristic of AlGaN/GaN HEMTs with graded AlGaN layer

  • Shenqi Qu (a1), Xiaoliang Wang (a1) (a2) (a3), Hongling Xiao (a1), Cuimei Wang (a1), Lijuan Jiang (a1), Chun Feng (a1), Hong Chen (a1), Haibo Yin (a1), Enchao Peng (a1), He Kang (a1), Zhanguo Wang (a1) (a2) and Xun Hou (a3)...

Abstract

A theoretical study of transconductance characteristics (gm − Vgs profile) of AlGaN/GaN high electron mobility transistors (HEMTs) with a graded AlGaN layer is given in this paper. The calculations were made using a self-consistent solution of the Schrödinger-Poisson equations and an AlGaN/GaN HEMTs numerical device model. Transconductance characteristics of the devices are discussed while the thickness and Al composition of the graded AlGaN layer are optimized. It is found that graded AlGaN layer structure can tailor device’s gm − Vgs profile by improving polar optical phonon mobility and interface roughness mobility. Good agreement is obtained between the theoretical calculations and experimental measurements over the full range of applied gate bias.

Copyright

Corresponding author

References

Hide All
[1] Smorchkova, I.P., et al., Appl. Phys. Lett. 77, 3998 (2000)
[2] Cao, Y., Jena, D., Appl. Phys. Lett. 90, 182112 (2007)
[3] Shinohara, K., et al., Electron Devices Meeting (IEDM), IEEE International, 2010, pp. 30.1.1
[4] Corrion, A.L., et al., IEEE Electron Device Lett. 31, 1116 (2010)
[5] Chung, J., et al., Electron Devices Meeting (IEDM), IEEE International, 2010, pp. 30.2.1
[6] Shinohara, K., et al., IEEE Electron Device Lett. 32, 1074 (2011)
[7] Palacios, T., et al., IEEE Trans. Electron Devices 53, 562 (2006)
[8] Trew, R.J., et al., IEEE Trans. Microwave Theor. Tech. 54, 2061 (2006)
[9] Jie, L., et al., IEEE Electron Device Lett. 26, 145 (2005)
[10] Sung Park, P., et al., Appl. Phys. Lett. 100, 063507 (2012)
[11] Yamakawa, S., et al., J. Appl. Phys. 79, 911 (1996)
[12] Hsu, L., Walukiewicz, W., Phys. Rev. B 56, 1520 (1997)
[13] Yu, T.-H., Brennan, K.F., J. Appl. Phys. 89, 3827 (2001)
[14] Asgari, A., Babanejad, S., Faraone, L., J. Appl. Phys. 110, 113713 (2011)
[15] Tan, I., et al., J. Appl. Phys. 68, 4071 (1990)
[16] Bi, Y., et al., Eur. Phys. J. Appl. Phys. 55, 10102 (2011)
[17] Ding, J., et al., J. Alloys Compd. 523, 88 (2012)
[18] Guo, L., et al., J. Cryst. Growth 298, 522 (2007)
[19] Guo, L., et al., Microelectron. J. 39, 777 (2008)
[20] Asgari, A., J. Appl. Phys. 95, 1185 (2004)
[21] Miao, L., Yan, W., IEEE Trans. Electron Devices 55, 261 (2008)
[22] Li, M., Wang, Y., Chin. Phys. Lett. 24, 2998 (2007)
[23] Cheng, X.X., Li, M., Wang, Y., IEEE Trans. Electron Devices 56, 2881 (2009)
[24] Katz, O., et al., IEEE Trans. Electron Devices 50, 2002 (2003)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed