Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-19T02:22:44.768Z Has data issue: false hasContentIssue false

Analysis of GaN cap layer effecting on critical voltage for electrical degradation of AlGaN/GaN HEMT

Published online by Cambridge University Press:  10 October 2014

Shenqi Qu
Affiliation:
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083, P.R. China
Xiaoliang Wang*
Affiliation:
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083, P.R. China Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, PO Box 912, Beijing 100083, P.R. China ISCAS-XJTU Joint Laboratory of Functional Materials and Devices for Informatics, Xi’an 710049, P.R. China
Hongling Xiao
Affiliation:
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083, P.R. China
Cuimei Wang
Affiliation:
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083, P.R. China
Lijuan Jiang
Affiliation:
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083, P.R. China
Chun Feng
Affiliation:
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083, P.R. China
Hong Chen
Affiliation:
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083, P.R. China
Haibo Yin
Affiliation:
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083, P.R. China
Junda Yan
Affiliation:
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083, P.R. China
Enchao Peng
Affiliation:
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083, P.R. China
He Kang
Affiliation:
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083, P.R. China
Zhanguo Wang
Affiliation:
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083, P.R. China Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, PO Box 912, Beijing 100083, P.R. China
Xun Hou
Affiliation:
ISCAS-XJTU Joint Laboratory of Functional Materials and Devices for Informatics, Xi’an 710049, P.R. China
*
Get access

Abstract

We present calculation of critical voltage for AlGaN/GaN high electron mobility transistors (HEMTs) with GaN cap layer. The calculation includes mechanical stress and relaxable energy in the GaN/AlGaN barrier layer. Under high voltage conditions, the high electric field results in an increase in stored relaxable energy. If this exceeds a critical value, crystallographic defects are formed. This degradation mechanism is voltage driven and characterized by a critical voltage beyond which non-reversible degradation takes place. The dependence of the GaN cap layer’s thickness on the critical voltage has been discussed. The calculated results indicate that thicker GaN cap layer results in higher critical voltage.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Smorchkova, I.P. et al., Appl. Phys. Lett. 77, 3998 (2000)CrossRef
Cao, Y., Jena, D., Appl. Phys. Lett. 90, 182112 (2007)CrossRef
Shinohara, K. et al., in Electron Devices Meeting (IEDM), 2010 IEEE International (San Francisco, CA, 2010), p. 30.1.1Google Scholar
Corrion, A.L. et al., IEEE Electron Device Lett. 31, 1116 (2010)CrossRef
Chung, J.W. et al., IEEE Electron Device Lett. 31, 195 (2010)CrossRef
Shinohara, K. et al., IEEE Electron Device Lett. 32, 1074 (2011)CrossRef
Joh, J., Del Alamo, J.A., IEEE Electron Device Lett. 29, 287 (2008)CrossRef
Joh, J. et al., Microelectron. Reliab. 50, 767 (2010)CrossRef
Kikkawa, T. et al., in Electron Devices Meeting, 2001. IEDM’01. Technical Digest. International (IEEE, Washington, DC, USA, 2001), p. 25.4.1Google Scholar
Waltereit, P. et al., J. Appl. Phys. 106, 023535 (2009)CrossRef
Ivo, P. et al., in Reliability Physics Symposium, 2009 IEEE International (IEEE, Montreal, QC, 2009), p. 71CrossRefGoogle Scholar
Hull, R. et al., Appl. Phys. Lett. 48, 56 (1986)CrossRef