Skip to main content Accessibility help
×
Home

Alternating current conductivity and dielectric relaxation of PANI:PVDF composites

  • Sami Saïdi (a1), Aymen Mannaî (a1), Mouna Bouzitoun (a1) and Abdellatif Belhadj Mohamed (a1)

Abstract

In this work, PANI:PVDF composites films were prepared with different PANI contents (p = 1, 2, 3, 4 and 5%). The resulting films were dried at various temperatures such as 30, 90 and 120 °C. The alternating current mechanisms and dielectric relaxation and of PANI:PVDF films were studied using complex impedance spectroscopy over a wide range of temperature (303–453 K) and a frequency range (1 kHz to 1 MHz). We found that the ac conductivity in PANI:PVDF composite is governed by correlated barrier hopping (CBH) model. In dielectric loss modulus study, two relaxation processes were identified. The first peak was associated to Maxwell Wagner-Sillas (MWS) relaxation whereas the second one which obtained at higher frequency was attributed to the αc relaxation. For PANI:PVDF film which dried at 30 °C, the MWS relaxation appears only at higher temperature. The temperature dependence of αc relaxation was suitably fitted according to Vogel Flucher Temman model whereas MWS relaxation follows Arrhenius type behavior. The effect of drying temperature on microstructure and phase crystallization of PVDF in the composites was carried out using atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectroscopy. These results were used to find a reasonable correlation between microstructure and electrical properties.

Copyright

Corresponding author

References

Hide All
[1] Kawai, H., Jpn J. Appl. Phys. 8, 975 (1996)
[2] Lovinger, A.J., Science 220, 11 (1983)
[3] Satrapathy, S., Pawar, S., Gupta, P.K., Varma, K.B.R., Bull. Mater. Sci 34, 727 (2011)
[4] Babu, V.J., Vempati, S., Ramakrishna, S., Mat. Sci. Appl. 4, 1 (2013)
[5] Furukawa, T., IEEE. Trans. Electr. Insul. 24, 375 (1989)
[6] Chan, H.L., Zhao, Z., Kwok, K.W., Choy, C.L., J. Appl. Phys. 80, 3982 (1996)
[7] Gregorio, R., Capitao, R.C., J. Mater. Sci. 35, 299 (2000)
[8] Silva, M.P., Sencadas, V., Botelho, G., Machado, A.V., Rolo, A.G., Rocha, J.G., Lanceros-Mendez, S., Mater. Chem. Phys. 122, 87 (2010)
[9] Sencadas, V., Gregorio, R., Lanceros-Mendez, S., J. Macromol. Sci. Part B: Phys. 48, 514 (2009)
[10] Martins, P., Costa, C.M., Lanceros-Mendez, S., Appl. Phys. Mater. Sci. Process. 103, 233 (2011)
[11] Ince-Gunduz, B.S., Alpern, R., Amare, D., Crawford, J., Dolan, B., Jones, S., Kobylarz, R., Reveley, M., Cebe, P., Polymer 51, 1485 (2010)
[12] Lopes, A.C., Costa, C.M., Tavares, C.J., Neves, I.C., Lanceros-Mendez, S., J. Phys. Chem. 37, 18076 (2011)
[13] Satrapathy, S., Pawar, S., Gupta, P.K., Varma, K.B.R., Bull. Mater. Sci. 34, 727 (2011)
[14] Costa, P., Silva, J., Sencadas, V., Costa, C.M., van Hattum, F.J., Rocha, J.G., Lanceros-Mendez, S., Carbon 47, 2590 (2009)
[15] Boyd, R.H., Polymer 26, 323 (1985)
[16] Sencadas, V., Costa, C.M., Moreira, V., Monteiro, J., Mendiratta, S.K., Mano, J.F., Lanceros-Mendez, S., E-Polymers 2, 1 (2005)
[17] Boyd, R.H., Polymer 26, 1123 (1985)
[18] Tsangaris, G.M., Psarras, G.C., J. Mater. Sci. 34, 2151 (1999)
[19] Psarras, G.C., Manolakaki, E., Tsangaris, G.M., Composites Part A: Appl. Sci. Manufacturing 33, 375 (2002)
[20] Tsangaris, G.M., Psarras, G.C., Kontopoulos, A.J., J. Non-Cryst. Solids 31, 1164 (1991)
[21] Soares, B.G., Leyva, M.E., Barraand, G.M.O., Khastgi, D., Eur. Polym. J. 86, 42676 (2005)
[22] Singh, R., Arora, V., Tandon, R.P., Mansingh, A., Chandra, S., Synth. Met. 44, 104137 (1999)
[23] Fattoum, A., Gmati, F., Bohli, N., Arous, M., A. Belhadj Mohamed, J. Phys. D: Appl. Phys. 410, 95407 (2008)
[24] Fauveaux, S., Miane, J.-L., Electromagnetics 23, 617 (2003)
[25] Rmili, H., Miane, J.-L., Olinga, T.E., Zangar, H., Int. J. Polymer Anal. Char. 9, 1563 (2004)
[26] Tawansi, A.H., Abdelrazek, E.M., Abdelaziz, M., Polym. Test. 18, 579 (1999)
[27] Gregorio, R. Jr., Cestari, M., Polym, J., Sci, , Part B: Polym. Phys. 32, 859 (1994)
[28] Salimi, A., Yousefi, A.A., Polym. Test 22, 699 (2003)
[29] Reghu, M., Phys. Rev. B 31, 50139 (1994)
[30] Sidebottom, D.L., Phys. Rev. Lett. 6, 823653 (1999)
[31] Planes, J., Banka, E., Senis, R., Pron, A., Synth. Met. 8, 84797 (1997)
[32] Bottger, H., Bryskin, U.V., Hopping Conduction in Solids (Akademie, Berlin, 1985), pp. 169213
[33] Mott, N.F., Davis, E.A., Electronic Processes in NonCrystalline Materials (Clarendon, Oxford, 1979), pp. 157600
[34] Jonscher, A.K., Nature 267, 673 (1977)
[35] Ghosh, A., Phys. Rev. B. 41, 1479 (1990)
[36] Elliott, S.R., Adv. Phys. 36, 135 (1987)
[37] Long, A.R., Adv. Phys. 31, 553 (1982)
[38] Elliott, S.R., Philos. Mag. B 37, 553 (1978)
[39] Afifi, M.A., Bekheet, A.E., Abd Elwahhab, E., Atyia, H.E., Vacuum 61, 9 (2001)
[40] Lee, H.T., Liao, C.S., Chen, S.A., Makromol. Chem. 194, 2443 (1993)
[41] Baziard, Y., Breton, S., Toutain, S., Gourdenne, A., Eur. Polym. J. 24, 521 (1988)
[42] Nogales, A., Denchev, Z., Sics, I., Ezquerra, T.A., Macromolecules 33, 9367 (2000)
[43] Okrasa, L., Boiteux, G., Ulanski, J., Seytre, G., Polymer 42, 3817 (2001)
[44] Psarras, G.C., Manolakaki, E., Tsangaris, G.M., Composites Part A: Appl. Sci. Manufacturing 34, 1187 (2003)
[45] Fulcher, G.S., J. Am. Ceram. Soc. 8, 339 (1925)
[46] Vogel, H., Phys. Z. (Leipzig), 22, 645 (1921)
[47] Tuncer, E., Wagener, M., Gerhard-Mülthaupt, R., J. Non-Cryst. Solids 351, 2917 (2005)
[48] Bella, A., Laredo, E., Grimau, M., Phys. Rev. B 60, 12764 (1999)
[49] Grimau, M., Laredo, E., Bello, A., Suarez, N., J. Polym. Sci. Pol. Phys. 35, 2483 (1997)

Alternating current conductivity and dielectric relaxation of PANI:PVDF composites

  • Sami Saïdi (a1), Aymen Mannaî (a1), Mouna Bouzitoun (a1) and Abdellatif Belhadj Mohamed (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed