Skip to main content Accessibility help
×
Home

Preparation and study of the structural and electronic properties of the type-I clathrate phase Ba8Ga16MgxGe30-x

Published online by Cambridge University Press:  09 December 2013


De-Cong Li
Affiliation:
College of Optoelectronic Engineering, Yunnan Open University, Kunming, Yunnan Province 650223, P.R. China
Shu-Kang Deng
Affiliation:
Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Normal University, Kunming, Yunnan Province 650092, P.R. China
Hai-Rong Wang
Affiliation:
College of Optoelectronic Engineering, Yunnan Open University, Kunming, Yunnan Province 650223, P.R. China
Yi-Fen Zhao
Affiliation:
Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Normal University, Kunming, Yunnan Province 650092, P.R. China
Xing-Fa Zi
Affiliation:
Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Normal University, Kunming, Yunnan Province 650092, P.R. China
Yi Tu
Affiliation:
Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Normal University, Kunming, Yunnan Province 650092, P.R. China
Liang Fang
Affiliation:
Department of Applied Physics, Chongqing University, Chongqing 400044, P.R. China
Wen-Hou Wei
Affiliation:
Department of Applied Physics, Chongqing University, Chongqing 400044, P.R. China
Corresponding
E-mail address:

Get access

Abstract

Polycrystalline Ba8Ga16MgxGe30−x compounds were synthesized by combining solid-state reaction with spark plasma sintering (SPS) method. The structural and electronic properties of Mg-substituted Ge type-I clathrate phase Ba8Ga16MgxGe30−x (x = 1, 2, 3, 4) were investigated experimentally and theoretically. Theoretically structural and electronic properties of Ba8Ga16MgxGe30−x were calculated by first-principles method based on the density-functional theory. The results indicate a strong preference for the occupation of the 6c sites by Mg. It is found that Mg substitution for Ge can lower the melting points and bulk modulus of this system. The formation energies and the binding energies decrease with increasing Mg content, suggesting that the Mg-doped Ba8Ga16Ge30 clathrates are stable in a limited range of composition. The calculated results show that these alloys are all indirect gap semiconductors and the values of band gap increase with the increase of Mg content. All specimens exhibit the behavior of the p-type conduction, which is originated from the presence of a shallow acceptor energy level. The electrical conductivity and the room-temperature carrier mobility decrease with increasing Mg content, while the room-temperature carrier concentration increases with increasing Mg content.


Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below.

References

Altenkirch, E., Physikalische Zeitschrift 10, 560 (1909)
Nolas, G.S., Sharp, J., Goldsmid, H.J., Thermoelectrics: Basic Principles and New Materials Developments (Springer, New York, 2001)CrossRefGoogle Scholar
Eisenmann, B., Schäfer, H., Zagler, R., J. Less-Common Met. 118, 43 (1986)CrossRef
Slack, G.A., CRC Handbook of Thermoelectrics (CRC, Boca Raton, FL, 1995), Chap. 34, p. 407Google Scholar
Snyder, G.J., Christensen, M., Nishibori, E., Caillat, T., Iversen, B.B., Nat. Mater. 3, 458 (2004)CrossRef
Koza, M.M., Johnson, M.J., Viennoits, R., Mutka, H., Girard, L., Ravot, D., Nat. Mater. 7, 805 (2008)CrossRef
Liang, Y., Böhme, B., Ormeci, A., Borrmann, H., Pecher, O., Haarmann, F., Schnelle, W., Baitinger, M., Grin, Y., Chem. Eur. J. 18, 9818 (2012)CrossRef
Svilen, B., Sevov, C., J. Am. Chem. Soc. 123, 3389 (2001)
Avila, M.A., Suekuni, K., Umeo, K., Takabatake, T., Physica B 383, 124 (2006)CrossRef
Li, Y., Gao, J., Chen, N., Liu, Y., Luo, Z.P., Zhang, R.H., Ma, X.Q., Cao, G.H., Physica B 403, 1140 (2008)CrossRef
Kuznetsov, V.L., Kuznetsova, L.A., Kaliazin, A.E., Rowe, D.M., J. Appl. Phys. 87, 7871 (2000)CrossRef
Nolas, G.S., Cohn, J.L., Slack, G.A., Schujman, S.B., Appl. Phys. Lett. 73, 178 (1998)CrossRef
Avila, M.A., Suekuni, K., Umeo, K., Fukuoka, H., Yamanaka, S., Takabatake, T., Appl. Phys. Lett. 92, 041901 (2008)CrossRef
Martin, J., Nolasa, G.S., Wang, H., J. Appl. Phys. 102, 103719 (2007)CrossRef
Kozina, M., Bridges, F., Jiang, Y., Avila, M.A., Suekuni, K., Taka, T., Phys. Rev. B 80, 212101 (2009)CrossRef
Saramat, A., Svensson, G., Palmqvist, A.E.C., Stiewe, C., Mueller, E., Platzek, D., Williams, S.G.K., Rowe, D.M., Bryan, J.D., Stucky, G.D., J. Appl. Phys. 99, 023708 (2006)CrossRef
May, A.F., Toberer, E.S., Saramat, A., Snyder, G.J., Phys. Rev. B 80, 125205 (2009)CrossRef
Tang, X.F., Li, P., Deng, S.K, Zhang, Q.J., J. Appl. Phys. 104, 013706 (2008)CrossRef
Cohn, J.L., Nolas, G.S., Fessatidis, V., Metcalf, T.H., Slack, G.A., Phys. Rev. Lett. 82, 779 (1999)CrossRef
Slack, G.A., in Solid State Physics, 34, edited by Ehrenreich, H., Seitz, F., Turnbull, D. (Academic Press, New York, 1979), pp. 171Google Scholar
Heremans, J.P., Jovovic, V., Toberer, E.S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., Snyder, G.J., Science 321, 554 (2008)CrossRef
Deng, S.K., Saiga, Y., Kajisa, K., Takabatake, T., J. Appl. Phys. 109, 103704 (2011)CrossRef
Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., Joannopoulos, J.D., Rev. Mod. Phys. 64, 1045 (1992)CrossRef
Perdew, J.P., Burke, K., Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996)CrossRef
Okamoto, N.L., Kishida, K., Tanaka, K., Inui, H., J. Appl. Phys. 100, 073504 (2006)CrossRef
Blake, N.P., Bryan, D., Latturner, S., Møllnitz, L., Stucky, G.D., Metiu, H., J. Chem. Phys. 114, 10063 (2001)CrossRef
Larson, A.C., Von Dreele, R.B., General Structure Analysis System (GSAS), Los Alamos National Laboratory, Report LAUR 86-748, 2000
Bentien, A., Palmqvist, A., Bryan, J.D., Latturner, S., Stucky, G.D., Furenlid, L., Iversen, B.B., Angew. Chem. Int. Ed. Engl. 39, 3613 (2000)3.0.CO;2-D>CrossRef
Latturner, S.E., Ph.D. thesis, University of California, 2000
Nenghabi, E.N., Myles, C.W., Phys. Rev. B 77, 205203 (2008)CrossRef
Dong, J., Sankey, O.F., Ramachandran, G.K., Mcmillan, P.F., J. Appl. Phys. 87, 7726 (2000)CrossRef
Leoni, S., Cabrera, W.C., Grin, Y., J. Alloys Compd. 350, 113 (2003)CrossRef
Moriguchi, K., Munetoh, S., Shintani, A., Motooka, T., Phys. Rev. B 64, 195409 (2001)CrossRef
Zhu, X.H., Chen, N., Liu, L.H., Li, Y., J. Appl. Phys. 111, 07E305 (2012)CrossRef
Miguel, A.S., Melinon, P., Connetable, D., Blase, X., Tournus, F., Reny, E., Yamanaka, S., Itie, J.P., Phys. Rev. B 65, 054109 (2002)CrossRef
Loveday, J.S., Nelms, R.J., Guthrie, M., Belmonte, S.A., Allan, D.R., Klug, D.D., Tse, J.S., Handa, Y.P., Nature 410, 661 (2001)CrossRef
Rutter, M.D., Uchida, T., Secco, R.A., Huang, Y., Wang, Y., J. Phys. Chem. Solids 62, 599 (2001)CrossRef
Moriguchi, K., Munetoh, S., Shintani, A., Phys. Rev. B 62, 7138 (2000)CrossRef
Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C., Phys. Rev. B 46, 6671 (1992)CrossRef
Speich, G.R., Schwoeble, A.J., Leslie, W.C., Metall. Trans. 3, 2031 (1972)CrossRef
Cohen, M.L., Phys. Rev. B 32, 7988 (1985)CrossRef
Haines, J., J.M. Lèger, Annu. Rev. Mater. Res. 311, 1 (2001)CrossRefGoogle Scholar
Blase, X., Gillet, P., Miguel, A.S., Melinon, P., Phys. Rev. Lett. 92, 215505 (2004)CrossRef
Brazhkin, V.V., Lyapin, A.G., Popova, S.V., J. Appl. Phys. 84, 219 (1998)CrossRef
Watkins, G.D., in Deep Centers in Semiconductors, edited by Pantelides, T. (Gordon and Breach, New York, 1986), p. 147Google Scholar
Watkins, G.D., Rong, F., Barry, W.A., Donegan, J.F., Mat. Res. Soc. 104, 3 (1988)CrossRef
Blake, N.P., Latturner, S., Bryan, J.D., Stucky, G.D., Metiu, H., J. Chem. Phys. 115, 8060 (2001)CrossRef
San-Miguel, A., Kéghélian, P., Blase, X., Mélinon, P., Perez, A., Itié, J.P., Polian, A., Cohen, M.L., Phys. Rev. B 32, 7988 (1985)
Dong, J.J., Sankey, O.F., J. Phys. Condens. Matter 11, 6129 (1999)CrossRef
Connétable, D., Timoshevskii, V., Artacho, E., Blase, X., Phys. Rev. Lett. 87, 206405 (2001)CrossRef
Altenkirch, E., Physikalische Zeitschrift 12, 920(1911)

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 4 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 1st December 2020. This data will be updated every 24 hours.

Hostname: page-component-6d4bddd689-mg6j7 Total loading time: 17.398 Render date: 2020-12-01T13:15:20.994Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Tue Dec 01 2020 12:43:07 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Preparation and study of the structural and electronic properties of the type-I clathrate phase Ba8Ga16MgxGe30-x
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Preparation and study of the structural and electronic properties of the type-I clathrate phase Ba8Ga16MgxGe30-x
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Preparation and study of the structural and electronic properties of the type-I clathrate phase Ba8Ga16MgxGe30-x
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *