Hostname: page-component-cc8bf7c57-fxdwj Total loading time: 0 Render date: 2024-12-11T17:23:48.447Z Has data issue: false hasContentIssue false

Experimental and numerical investigations of the corona characteristics of a new Tri-electrode system for electrostatic separation processes

Published online by Cambridge University Press:  13 August 2014

Mohamed M. Abouelsaad*
Affiliation:
Faculty of Engineering at Shoubra, Benha University, 108 Shoubra st., Cairo, Egypt
Mohamed A. Abouelatta
Affiliation:
Faculty of Engineering at Shoubra, Benha University, 108 Shoubra st., Cairo, Egypt
Abdelhadi R. Salama
Affiliation:
Faculty of Engineering at Shoubra, Benha University, 108 Shoubra st., Cairo, Egypt
Get access

Abstract

The paper presents the measurement and computation of the corona onset voltages, electric field and ion current density profiles of a new “Tri-electrode system” intended for electrostatic separation applications. Unlike the well-known “dual cylinder-wire electrode system”, the new system utilizes an extra adjustable wire in order to provide the means for a more efficient ion charging current; necessary for separation of different granular mixtures. An experimental setup is constructed to model the present multi-electrode arrangement. The measurements are carried out for wire diameters between 0.3–1.0 μm and for different geometrical parameters. Without resorting to the commonly used Deutch’s assumption, a computational scheme is developed to solve the corona equations and to compute the associated ionized field quantities of the system. Mapping of the ion flow field patterns demonstrates the impact of this assumption on the solution’s accuracy. The computed results were found to be in good agreement with experiments. The configuration offers a more efficient charging process and separation in comparison with earlier separators’ designs.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Moore, A.D. (ed.), Electrostatics and its Applications (Wiley, New York, 1973)Google Scholar
Chang, J.S., Kelly, A.J., Crowley, J.M (eds.), Handbook of Electrostatic Processes (Dekker, New York, 1995)Google Scholar
Hughes, J. Electrostatic Particle Charging (Wiley, New York, 1997)Google Scholar
Kachi, M., Nemamcha, M., Herous, L., Dascalescu, L., J. Electrostat. 69, 296 (2011)CrossRef
Tabti, B., Mekideche, R., Plopeanu, M., Dumitran, L.M., Herous, L., Dascalescu, L., IEEE Trans. Ind. Appl. 46, 634 (2010)CrossRef
Tabti, B., Dascalescu, L., Plopeanu, C.M., Antoniu, A., Mekideche, R., J. Electrostat. 67, 193 (2009)CrossRef
Dumitran, L.M., Blejan, O., Notingher, P.V., Samuila, A., Dascalescu, L., IEEE Trans. Ind. Appl. 44, 1385 (2008)CrossRef
Samuila, A., Blajan, M., Beleca, R., Huzau, M., Morar, R., Dascalescu, L., Iuga, A., J. Electrostat. 63, 955 (2005)CrossRef
Rafiroiu, D., Suarasan, I., Morar, R., Atten, P., Dascalescu, L., IEEE Trans. Ind. Appl. 37, 766 (2001)CrossRef
Abouelsaad, M., Abouelatta, M., Salama, A., IET Sci. Meas. Technol. 7, 16 (2012)CrossRef
Rafiroiu, D., Morar, R., Atten, P., Dascalescu, L., IEEE Trans. Ind. Appl. 36, 1260 (2000)CrossRef
Dumitram, L.M., Atten, P., Notingher, P.V., Dascalescu, L., J. Electrostat. 64, 176 (2005)CrossRef
Dascalescu, L., Iuga, A., Morar, R., Neamtu, V., Suarran, I., Samuila, A., Rafiroiu, D., J. Electrostat. 29, 211 (1993)CrossRef
Dascalescu, L., Samuila, A., Rafiroiu, D., Iuga, A., Morar, R., IEEE Trans. Ind. Appl. 35, 543 (1999)CrossRef
Iuga, A., Samuila, A., Blajan, M., Beleca, R., Morar, R., Dascalescu, L., Characterization of wire corona electrodes at various discharge gaps in electrostatic separation processes, in 39th IAS Annual Meeting. Industry Applications Conference, Seattle, USA, 2004
Dumitran, L.M., Dascalescu, L., Notingher, P.V., Atten, P., J. Electrostat. 65, 758 (2007)CrossRef
Plopeanu, M.C., Dascalescu, L., Yahiaoui, B., Antoniu, A., Hulea, M., Notingher, P., IEEE Trans. Ind. Appl. 48, 851 (2012)CrossRef
Plopeanu, M.C., Dascalescu, L., Neagoe, B., Bendaoud, A., Notingher, P., J. Electrostat. 71, 517 (2013)CrossRef
Kachi, M., Dascalescu, L., J. Electrostat. 72, 6 (2014)CrossRef
Abouelsaad, M., IET Sci. Meas. Technol. 8, 1 (2014)CrossRef
Sigmond, R.S., J. Electrostat. 18, 249 (1986)CrossRef
Peek, F., Ionization Phenomena in High Voltage Engineering (New York, McGraw-Hill, 1929)Google Scholar
Sattari, P., Gallo, C.F., Castle, G.S.P., Adamiak, K., J. Phys. D: Appl. Phys. 44, 5502 (2011)CrossRef
Yanallah, K., Pontiga, F., Castellanos, A., J. Phys. D: Appl. Phys. 44, 5201 (2011)CrossRef
Jaiswal, V., Thomas, M.J., J. Phys. D: Appl. Phys. 36, 3089 (2003)CrossRef
Yanallah, K., Pontiga, F., Plasma Sources Sci. Technol. 21, 5007 (2012)CrossRef
Abdel-Salam, M., Hashem, A., Turky, A., Abdel Aziz, A., J. Phys. D: Appl. Phys. 40, 1684 (2007)CrossRef
Elmoursi, A.A., Speck, C.E., IEEE Trans. Ind. Appl. 26, 384 (1990)CrossRef
Jones, J.E., Davies, M., J. Phys. D: Appl. Phys. 25, 1749 (1992)CrossRef
Bouziane, A., Hidaka, K., Jones, J.E., Rowlands, A.R., Taplamacioglu, M.C., Waters, R.T., IEE Proc.-Sci. Meas. Technol. 141, 205 (1994)CrossRef
Bendaoud, A., Tilmatine, A., Medles, K., Rahli, M., Huzau, M., Dascalescu, L., IEEE Trans. Ind. Appl. 44, 692 (2008)CrossRef