Skip to main content Accessibility help
×
Home
Hostname: page-component-5bf98f6d76-v92w2 Total loading time: 0.224 Render date: 2021-04-21T02:58:28.473Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Effect of the hydrogen dilution on the short-range and intermediate-range-order in radiofrequency magnetron sputtered hydrogenated amorphous silicon films

Published online by Cambridge University Press:  25 June 2004

A. Ben Othman
Affiliation:
Faculté des Sciences de Tunis, Campus Universitaire El Menzeh, 1060 Tunis, Tunisia
M. Daouahi
Affiliation:
Faculté des Sciences de Bizerte, 7021 Zarzouna, Bizerte, Tunisia
J. Henocque
Affiliation:
Laboratoire de Physique de la Matière Condensée, Faculté des Sciences d'Amiens, 33 rue Saint-Leu, 80039 Amiens Cedex, France
K. Zellama
Affiliation:
Laboratoire de Physique de la Matière Condensée, Faculté des Sciences d'Amiens, 33 rue Saint-Leu, 80039 Amiens Cedex, France
H. Bouchriha
Affiliation:
Faculté des Sciences de Tunis, Campus Universitaire El Menzeh, 1060 Tunis, Tunisia
Corresponding
Get access

Abstract

Raman spectroscopy experiments correlated with infrared absorption, optical transmission and photothermal deflection spectroscopy ones are used to investigate in detail the short-range-order (SRO) and intermediate-range-order (IRO) in hydrogenated amorphous silicon (a-Si:H) films elaborated at high rates (~15 Å/s) by radiofrequency magnetron sputtering with various hydrogen dilution percentage (5 to 20%), leading to different hydrogen-related microstructure and content. The analysis of the transverse optic (TO)- and transverse acoustic (TA)-like modes of the Raman spectra indicates that both, the SRO and IRO are more strongly dependent on the nature of hydrogen bonding configurations, namely the relative proportion of polyhydride Si-H2 and (Si-H2) n complexes and/or clustered monohydride (Si-H) n groups incorporated in the films, rather than on the total bonded hydrogen content. The increase observed in the line width of the TO- and TA-like modes are well correlated with that of the disorder parameter E 0, also called Urbach edge parameter, which is related to the exponential absorption from the valence band tails states distribution. Moreover, the analysis of the optical transmission data clearly evidences that the dispersion energy E d and the static refractive index n 0 are also maximum for films having the lowest value of E 0, suggesting that they exhibit the highest mean coordination number and compactness respectively, consistent with better SRO and IRO.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below.

References

Yamaguachi, M., Morigaki, K., J. Non-Cryst. Solids 137-138, 57 (1991) CrossRef
Pinarbasi, M., Kushner, M.K., Abelson, J.R., J. Appl. Phys. 68, 2255 (1990) CrossRef
Yamaguachi, M., Morigaki, K., Philos. Mag. B 79, 387 (1999) CrossRef
Williamson, D.L., Mater. Res. Soc. Symp. Proc. 377, 251 (1995) CrossRef
Xu, X., Yang, J., Guha, S., J. Non-Cryst. Solids 198-200, 60 (1996) CrossRef
Maley, N., Lannin, J.S., Phys. Rev. B 36, 1146 (1987) CrossRef
Maley, N., Beeman, D., Lannin, J.S., Phys. Rev. B 38, 10611 (1988) CrossRef
Morell, G., Katiyar, R.S., Weiz, S.Z., Jia, H., Shinar, J., Balberg, I., J. Appl. Phys. 78, 5120 (1995) CrossRef
Gupta, S., Katiyar, R.S., Morell, G., Weiz, S.Z., Balberg, I., Appl. Phys. Lett. 75, 2803 (1999) CrossRef
J.S. Lannin, in Semiconductors and Semimetals, edited by J.I. Pankve (Academic Press Inc., Orlando, USA, 1984) Vol. 21, part B, p. 159
O'leary, S.K., Zukotynski, S., Perez, J.M., Phys. Rev. B 51, 4143 (1995) CrossRef
Zanatta, A.R., Mulato, M., Chambouleyron, I., J. Appl. Phys. 84, 5184 (1998) CrossRef
M.H. Brodsky, in Light Scattering in Solids, edited by M. Cardona, Top. Appl. Phys. 8 (Springer, Berlin, 1975), p. 208
Kshirsagar, S.T., Khaladkar, N., Mamdapurkar, J.B., Sinha, A.P.B., Jap. J. Appl. Phys. 12, 1788 (1986) CrossRef
Danesh, P., Pantchev, B., Savatinova, I., J. Appl. Phys. 69, 7656 (1991) CrossRef
Touir, H., Zellama, K., Morhange, J.F., Phys. Rev. B 59, 10076 (1999) CrossRef
Touir, H., Morhange, J.F., Dixmier, J., Solid State Commun. 110, 315 (1999) CrossRef
Cuniot, M., Dixmier, J., Elkaïm, P., J. Non-Cryst. Solids 164-166, 99 (1993) CrossRef
Lusson, L., Lusson, A., El Kaim, P., Dixmier, J., Ballutaud, D., J. Appl. Phys. 81, 3073 (1997) CrossRef
Daouahi, M., Zellama, K., Bouchriha, H., Elkaïm, P., Eur. Phys. J. Appl. Phys. 10, 185 (2000) CrossRef
Langford, A.A., Fleet, M.L., Nelson, B.P., Langford, W.A., Maley, N., Phys. Rev. B 45, 13367 (1992) CrossRef
Manfredotti, C., Fizzotti, F., Boero, M., Pastorino, P., Polesello, P., Vittone, E., Phys. Rev. B 50, 18046 (1994) CrossRef
Wemple, S.H., Didomenico, M., Phys. Rev. B 3, 1338 (1971) CrossRef
Jackson, W.B., Amer, N., Phys. Rev. B 25, 5559 (1982) CrossRef
Daouahi, M., Ben Othman, A., Zellama, K., Essamet, M., Bouchriha, H., Solid State Commun. 120, 243 (2001) CrossRef
Zwick, A., Carles, R., Phys. Rev. B 48, 6024 (1993) CrossRef
Beeman, D., Tsu, T., Thorpe, M.F., Phys. Rev. B 32, 874 (1985) CrossRef
Cody, G.D., Tiedje, T., Abeles, B., Brooks, B., Goldstein, Y., Phys. Rev. B 47, 1480 (1982)
Amato, G., Fizotti, F., Manfredotti, C., Menna, P., Nobile, G., Spagnolo, R., Phys. Stat. Solids 36, 119 (1992) CrossRef
Mahan, A.H., Williamson, D.L., Furtak, T.E., Mater. Res. Soc. Symp. Proc. 467, 657 (1997) CrossRef
Laird, D.D., Schober, H.R., Phys. Rev. Lett. 66, 636 (1991) CrossRef
Chehaidar, A., Djafari Rouhani, M., Zwick, A., J. Non-Cryst. Solids 192-193, 238 (1995) CrossRef
Crandall, S., X-Liu, E. Iwaniez Ko, J. Non-Cryst. Solids 227-230, 23 (1998) CrossRef
Bhattacharya, E., Mahan, A.H., Appl. Phys. Lett. 52, 1587 (1988) CrossRef
Mahan, A.H., Williamson, D.L., Nelson, P.B., Crandall, R.S., Solar Cells 27, 465 (1989) CrossRef
Mahan, A.H., Menna, P., Tsu, R., Appl. Phys. Lett. 51, 1167 (1987) CrossRef
Bauer, S., Haage, T., Schrôder, B., Oechsner, H., J. Non-Cryst. Solids 198-200, 462 (1996) CrossRef
Yamasaki, S., Philos. Mag. B 56, 79 (1987) CrossRef
Gupta, S., Katiyar, R.S., Weisz, S.Z., Balberg, I., J. Non-Cryst. Solids 266-269, 496 (2000) CrossRef
Tanay Seth, P.N. Dixit, C. Mukherju, C. Amandan, R. Bhattacharya, Thin Solid Films 264, 11 (1995) CrossRef

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 2 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 21st April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effect of the hydrogen dilution on the short-range and intermediate-range-order in radiofrequency magnetron sputtered hydrogenated amorphous silicon films
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Effect of the hydrogen dilution on the short-range and intermediate-range-order in radiofrequency magnetron sputtered hydrogenated amorphous silicon films
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Effect of the hydrogen dilution on the short-range and intermediate-range-order in radiofrequency magnetron sputtered hydrogenated amorphous silicon films
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *