Skip to main content Accessibility help
×
Home

Analytical model for charge transport in organic thin-film transistors: application to polythiophene

Published online by Cambridge University Press:  03 September 2012

S. Zorai
Affiliation:
Laboratoire de physique des matériaux: structure et propriétés, groupe Physique des Composants et Dispositifs Nanométriques, Faculté des sciences de Bizerte, 7021 Jarzouna-Bizerte, Tunisia
R. Bourguiga
Affiliation:
Laboratoire de physique des matériaux: structure et propriétés, groupe Physique des Composants et Dispositifs Nanométriques, Faculté des sciences de Bizerte, 7021 Jarzouna-Bizerte, Tunisia
Corresponding
E-mail address:
Get access

Abstract

The electronic charge transport in active layer of organic thin-film transistor (OTFT) based on conductor polythiophene (sexithiophene (6T) and octithiophene (8T)) was studied. A mathematical model is presented based on the variable range hopping (VRH) transport theory. Using the VRH model the expression of source-drain current is established for two regimes: linear regime for drain bias VD = 2 V and saturation regime for VD = 30 V at low temperature and at room temperature. All electrical key parameters of OTFTs based on polythiophene have been extracted. A good agreement between theoretical model and experimental measurement of electrical characteristics is obtained for both temperature ranges: low temperature and room temperature.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below.

References

Tsumura, A., Koezuka, H., Ando, T., Appl. Phys. Lett. 49, 1210 (1986)CrossRef
Lin, Y.Y., Gundlach, D.J., Nelson, S.F., Jackson, T.N., IEEE Electron Device Lett. 18, 606 (1997)CrossRef
Horowitz, G., Hajlaoui, R., Bourguiga, R., Hajlaoui, M., Synth. Met. 101, 401 (1999)CrossRef
Bao, Z., Lovinger, A.J., Dodabalapur, A., Appl. Phys. Lett. 69, 3066 (1996)CrossRef
Bao, Z.A., Lovinger, A.J., Brown, J., J. Am. Chem. Soc. 120, 207 (1998)CrossRef
Shukla, D., Nelson, S.F., Freeman, D.C., Rajeswaran, M., Ahearn, W.G., Meyer, D.M., Carey, J.T., Chem. Mater. 20, 7486 (2008)CrossRef
Sirringhaus, H., Brown, P.J., Friend, R.H., Nielsen, M.M., Bechgaard, K., Langeveld-Voss, B.M.W., Spiering, A.J.H., Janssen, R.A.J., Meijer, E.W., Herwig, P., de Leeuw, D.M., Nature 401, 685 (1999)CrossRef
Baude, P.F., Ender, D.A., Haase, M.A., Kelley, T.W., Muyres, D.V., Theiss, S.D., Appl. Phys. Lett. 82, 3964 (2003)CrossRef
Rotzoll, R., Mohapatra, S., Olariu, V., Wenz, R., Grigas, M., Dimmler, K., Shchekin, O., Dodabalapur, A., Appl. Phys. Lett. 88, 123502 (2006)CrossRef
Huitema, H.E.A., Gelinck, G.H., van der Putten, J., Kuijk, K.E., Hart, C.M., Cantatore, E., Herwig, P.T., van Breemen, A., de Leeuw, D.M., Nature 414, 599 (2001)CrossRef
Gelinck, G.H., Huitema, H.E.A., van Veenendaal, E., Cantatore, E., Schrijnemakers, L., van der Putten, J., Geuns, T.C.T., Beenhakkers, M., Giesbers, J.B., Huisman, B.H., Meijer, E.J., Benito, E.M., Touwslager, F.J., Marsman, A.W., van Rens, B.J.E., De Leeuw, D.M., Nat. Mater. 3, 106 (2004)CrossRef
Rogers, J.A., Bao, Z., Baldwin, K., Dodabalapur, A., Crone, B., Raju, V.R., Kuck, V., Katz, H., Amundson, K., Ewing, J., Drzaic, P., Proc. Natl. Acad. Sci. USA 98, 4835 (2001)CrossRef
Comiskey, B., Albert, J.D., Yoshizawa, H., Jacobson, J., Nature 394, 253 (1998)
Sokolov, A.N., Roberts, M.E., Bao, Z.A., Mater. Today 12, 12 (2009)CrossRef
Malachowski, M.J., Zmija, J., Opto-Electron. Rev. 18, 121 (2010)CrossRef
Mansouri, S., Mahdouani, M., Oudir, A., Zorai, S., Ben Dkhil, S., Horowitz, G., Bourguiga, R., Eur. Phys. J. Appl. Phys. 48, 30401 (2009)CrossRef
Necludov, P.V., Shur, M., Solid-State Electron. 47, 259 (2003)CrossRef
Mansouri, S., Zorai, S., Bourguiga, R., Synth. Met. 162, 231 (2012)CrossRef
Waragai, K., Akimichi, H., Hotta, S., Kano, H., Sakaka, H., Phys. Rev. B 52, 1786 (1995)CrossRef
Vissenberg, M.C.J.M., Matters, M., Phys. Rev. B 57, 12964 (1998)CrossRef
Torsi, L., Dodabalapur, A., Katz, H.E., J. Appl. Phys. 78, 1088 (1995)CrossRef
Horowitz, G., Delannoy, P., J. Appl. Phys. 70, 469 (1991)CrossRef
Necliudov, P.V., Shur, M.S., Gundlach, D.J., Jackson, T.N., J. Appl. Phys. 88, 6594 (2000)CrossRef
Matters, M. et al., Opt. Mater. 12, 189 (1999)CrossRef
Horowitz, G., Hajlaoui, R., Delannoy, P., J. Phys. III France 5, 355 (1995)CrossRef
Horowitz, G., Hajlaoui, M.E., Adv. Mater. 2, 1046 (2000)3.0.CO;2-W>CrossRef
Efros, A.L., Shklovskii, B.I. (Springer-Verlag, Berlin, 1984), Chap. 9
Wu, M.W., Gonwell, E.M., Chem. Phys. Lett. 266, 363 (1997)CrossRef
Horowitz, G., Peng, X., Fichou, D., Garnier, F., J. Appl. Phys. 67, 528 (1990)CrossRef
Horowitz, G., Hajlaoui, R., Delannoy, P., J. Phys. III France 5, 1786 (1995)CrossRef
Spear, W.E., Le Comber, P.G., J. Non-Cryst. Solids 727, 8 (1972)
Garnier, F., Yassar, A., Hajlaoui, R., Horowitz, G., Deloffre, F., Sevret, B., Ries, S., Alnot, P., J. Am. Chem. Soc. 115, 8716 (1993)CrossRef
Horowitz, G., Hajlaoui, M.E., Hajlaoui, R., J. Appl. Phys. 87, 4456 (2000)CrossRef
Mansouri, S., Horowitz, G., Bourguiga, R., Synth. Met. 160, 1787 (2010)CrossRef
Sahimi, M., Applications of Percolation Theory (Taylor & Francis, London, 1994)Google Scholar
Pike, G.E., Seager, C.H., Phys. Rev. B 10, 1421 (1974)CrossRef
Guo, D., Miyadera, T., Ikeda, S., Shimada, T., Saiki, K., J. Appl. Phys. 102, 023706 (2007)CrossRef
Bourguiga, R., Mahdouani, M., Mansouri, S., Horowitz, G., Eur. Phys. J. Appl. Phys. 39, 7 (2007)CrossRef
Cerdeira, A., Estrada, M., Iňiguez, B., Pallarès, J., Marsal, L.F., Solid-State Electron. 48, 103 (2004)CrossRef
Bourguiga, R., Horowitz, G., Garnier, F., Hajlaoui, R., Jemai, S., Bouchriha, H., Eur. Phys. J. Appl. Phys. 19, 117 (2002)CrossRef

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 3 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 21st January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-tvlwp Total loading time: 0.237 Render date: 2021-01-21T15:53:18.619Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Analytical model for charge transport in organic thin-film transistors: application to polythiophene
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Analytical model for charge transport in organic thin-film transistors: application to polythiophene
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Analytical model for charge transport in organic thin-film transistors: application to polythiophene
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *