Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-25T09:31:06.043Z Has data issue: false hasContentIssue false

About the transparent electrode of the organic photovoltaic cells

Published online by Cambridge University Press:  23 November 2011

J.-C. Bernède*
Affiliation:
Moltech Anjou, UMR 6200, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44000 Nantes, France
D.-T. Nguyen
Affiliation:
Institut Jean Rouxel (IMN), UMR 6502, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44000 Nantes, France
L. Cattin
Affiliation:
Institut Jean Rouxel (IMN), UMR 6502, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44000 Nantes, France
M. Morsli
Affiliation:
LAMP, EA 3825, Faculté des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44000 Nantes, France
S.R.B. Kanth
Affiliation:
Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
S. Patil
Affiliation:
Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
Get access

Abstract

Electrodes and the nature of their contact with organic materials play a crucial role in the realization of efficient optoelectronic components. Whether the injection (organic light-emitting diodes – OLEDs) or collection (organic photovoltaic cells – OPV cells) of carriers, contacts must be as efficient as possible. To do this, it is customary to refer to electrode surface treatment and/or using a buffer layer all things to optimize the contact. Efficiency of organic photovoltaic cells based on organic electron donor/organic electron acceptor junctions can be strongly improved when the transparent conductive anode is coated with a buffer layer (ABL). We show that an ultra-thin gold (0.5 nm) or a thin molybdenum oxide (3–5 nm) can be used as efficient ABL. However, the effects of these ABL depend on the highest occupied molecular orbital (HOMO) of different electron donors of the OPV cells. The results indicate that, in the case of metal ABL, a good matching between the work function of the anode and the highest occupied molecular orbital of the donor material is the major factor limiting the hole transfer efficiency. Indeed, gold is efficient as ABL only when the HOMO of the organic donor is close to its work function ФAu. MoO3 has a wider field of application as ABL than gold. The role of the oxide is not so clearly understood than that of Au, different models proposed to interpret the experimental results are discussed.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cai, W., Gong, X., Cao, Y., Sol. Energ. Mater. Sol. Cell. 94, 114 (2010)CrossRef
Drechsel, J., Männig, B., Kozlowski, F., Gebeyehu, D., Werner, A., Koch, M., Leo, K., Pfeiffer, M., Thin Solid Films 451–452, 515 (2004)CrossRef
Braun, S.S., Salaneck, W.R., Fahlman, M., Adv. Mater. 21, 1450 (2009)CrossRef
Armstrong, N.R., Carter, C., Donley, C., Simmonds, A., Lee, P., Brumbach, M., Kippelen, B., Domercq, B., Yoo, S., Thin Solid Films 445, 342 (2003)CrossRef
Bruner, E.L., Koch, N., Span, A.R., Bernasek, S.L., Kahn, A., Schwartz, J., J. Am. Chem. Soc. 124, 3192 (2002)CrossRef
Johnev, B., Vogel, M., Fostiropoulos, K., Mertesacker, B., Rusu, M., Lux-Steiner, M.C., Weidinger, A., Thin Solid Films 488, 270 (2005)CrossRef
Jiang, X.-Y., Zhang, Z.-L., Cao, J., Zhu, W.-Q., Solid State Electron. 52, 952 (2008)CrossRef
Godoy, A., Cattin, L., Toumi, L., Diaz, F.R., del Valle, M.A., Soto, G.M., Kouskoussa, B., Morsli, M., Benchouk, K., Khelil, A., Bernède, J.C., Sol. Energ. Mater. Sol. Cell. 94, 648 (2010)CrossRef
Bernède, J.C., Cattin, L., Morsli, M., Berredjem, Y., Sol. Energ. Mater. Sol. Cell. 92, 1508 (2008)CrossRef
Cattin, L., Dahou, F., Lare, Y., Morsli, M., Tricot, R., Jondo, K., Khelil, A., Napo, K., Bernède, J.C., J. Appl. Phys. 105, 034507 (2009)CrossRef
Gordon, R.G., Mater. Res. Soc. Symp. Proc. 426, 419 (1996)CrossRef
Peumans, P., Bulovic, V., Forrest, S.R., Appl. Phys. Lett. 79, 2650 (2000)CrossRef
Salzman, R.F., Xue, J., Rand, B.P., Alexander, A., Thompson, M.E., Forrest, S.R., Org. Electron. 6, 242 (2005)CrossRef
Berredjem, Y., Karst, N., Cattin, L., Lkhdar-Toumi, A., Godoy, A., Soto, G., Diaz, F., del Valle, M.A., Morsli, M., Drici, A., Boulmok, A., Gheid, A.H., Khelil, A., Bernède, J.C., Dyes Pigments 78, 148 (2008)CrossRef
Park, Y., Choong, V., Gao, Y., Hsieh, B.R., Tang, C.W., Appl. Phys. Lett. 68, 2699 (1996)CrossRef
Wang, C.-H., Choy, W.C.H., Sol. Energ. Mater. Sol. Cell. 95, 904 (2011)CrossRef
Peumans, P., Forrest, S.R., Appl. Phys. Lett. 79, 126 (2001)CrossRef
Park, J., Kim, H.M., Kim, D.W., Choi, J.S., Appl. Phys. Lett. 97, 093301 (2010)CrossRef
Helander, M.G., Wang, Z.B., Qiu, J., Lu, Z.H., Appl. Phys. Lett. 93, 193310 (2008)CrossRef
Shi, Y., Luo, S.-C., Fang, W., Zhang, K., Ali, E.M., Boey, F.Y.C., Yinng, J.Y., Wang, J., Yu, H.-H, Li, L.J., Org. Electron. 9, 859 (2008)CrossRef
Lee, C.S., Tang, J.X., Zhou, Y.C., Lee, S.T., Appl. Phys. Lett. 94, 113304 (2009)CrossRef
Hoven, C.V., Garcia, A., Bazan, G.C., Nguyen, T.Q., Adv. Mater. 20, 3793 (2008)CrossRef
Kouskoussa, B., Morsli, M., Benchouk, K., Louarn, G., Cattin, L., Khellil, A., Bernède, J.C., Phys. Stat. Sol. A 206, 311 (2009)CrossRef
Zhang, F.J., Zhao, D.W., Zhuo, Z.L., Wang, H., Xu, Z., Wang, Y.S., Sol. Energ. Mater. Sol. Cell. 94, 2416 (2010)CrossRef
Kröger, M., Hamwi, S., Meyer, J., Riedl, T., Kowalsky, W., Khan, A., Appl. Phys. Lett. 95, 123301 (2009)CrossRef
Tong, X., Lassiter, B.E., Forrest, S.R., Org. Electron. 11, 705 (2010)CrossRef
Matsushima, T., Kinoshita, Y., Murata, H., Appl. Phys. Lett. 91, 253504 (2007)CrossRef
Yook, K.S., Lee, J.Y., Synt. Met. 159, 69 (2009)CrossRef
Mayer, J., Shu, A., Khan, A., Appl. Phys. Lett. 96, 133308 (2010)CrossRef
Zhang, M., Irfan, M.Z., Ding, H., Gao, Y., Tang, C.W., Appl. Phys. Lett. 96, 183301 (2010)CrossRef
Hancox, I., Sullivan, P., Chauchan, K.V., Beaumont, N., Rocheford, L.A., Hatton, R.A., Jones, T.S., Org. Electron. 11, 2019 (2010)CrossRef
Greiner, M.T., Helander, M.G., Wang, Z.B., Tang, W.M., Qiu, J., Lu, Z.H., Appl. Phys. Lett. 96, 213302 (2010)CrossRef
Chu, C.-W., Li, S.-H., Chen, C.-W., Shrotriya, V., Yang, Y., Appl. Phys. Lett. 87, 193508 (2005)CrossRef
You, H., Dai, Y., Zhang, Z., Ma, D., J. Appl. Phys. 101, 026105 (2007)CrossRef
Hori, T., Shibata, T., Kittichungchit, V., Moritou, H., Sakai, J., Kubo, H., Fujii, A., Ozaki, M., Thin Solid Films 518, 522 (2009)CrossRef
Garcia-Belomonte, G., Bisquert, J., Appl. Phys. Lett. 96, 113301 (2010)CrossRef
Thakur, A.K., Wantz, G., Garcia-Belomonte, G., Bisquert, J., Hirsh, L., Sol. Energ. Mater. Sol. Cell. 95, 2131 (2011)CrossRef
MacKenzie, R.C.I., Kirchartz, T., Dibb, G.F.H., Nelson, J., J. Phys. Chem. C 115, 9806 (2011)CrossRef
Kinoshita, Y., Hasobe, T., Murata, H., Appl. Phys. Lett. 91, 083518 (2007)CrossRef
Fujishima, D., Kanno, H., Kinoshita, T., Maruyama, E., Tanaka, M., Shirakawa, M., Shibate, K., Sol. Energ. Mater. Sol. Cell. 93, 1029 (2009)CrossRef