Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-20T10:49:21.289Z Has data issue: false hasContentIssue false

Waves in the Solar Corona

Published online by Cambridge University Press:  26 May 2016

Eckart Marsch*
Affiliation:
Max-Planck-Institut für Aeronomie, 37191 Katlenburg-Lindau, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Waves at all scales, ranging in wavelength from the size of a loop (fraction of a solar radius) down to the gyroradii of coronal ions (about hundred meters), are believed to play a key role in the transport of mechanical energy from the chromosphere to the Sun's corona and wind, and through the dissipation of wave energy in the heating and sustaining of the solar corona. A concise review of new observations and theories of waves in the magnetically confined (loops) as well as open (holes) corona is given. Evidence obtained from spectroscopy of lines emitted by coronal ions points to cyclotron resonance absorption as a possible cause of the observed emission-line broadenings. Novel remote-sensing solar observations reveal low-frequency loop oscillations as expected from MHD theory, which appear to be excited by magnetic activity in connection with flares and to be strongly damped. Kinetic models of the corona indicate the importance of wave-particle interactions that hold the key to understand ion acceleration and heating by high-frequency waves.

Type
Part 9: Heating of Solar and Stellar Coronae
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Aschwanden, M.J., De Pontieu, B., Shrijver, C.J., & Title, A. 2002, Solar Phys., 206, 99.Google Scholar
Barnes, A. 1969, ApJ, 155, 311.Google Scholar
De Moortel, I., Ireland, J., Hood, A., & Walsh, R. 2002, Solar Phys., 209, 61.Google Scholar
Goossens, M. 1991, in Advances in Solar System Magnetohydrodynamics, ed. Priest, E. R. & Hood, A. W., Cambridge University Press, 137.Google Scholar
Hackenberg, A., Marsch, E., & Mann, G. 1999, Space Sci. Rev., 87, 207.Google Scholar
Hansteen, V. H. 1993, ApJ, 402, 741.Google Scholar
Hasan, S.S., & Kalkofen, W. 1999, ApJ, 519, 899.Google Scholar
Hassler, D.M., Dammasch, I.E., Lemaire, P., et al. 1999, Science, 283, 810.CrossRefGoogle Scholar
Hollweg, J.V., & Isenberg, P.A. 2002, J. Geophys. Res., 107, SSH-12, 1.Google Scholar
Marsch, E. 1991, in Physics of the Inner Heliosphere, Vol. II, ed. Schwenn, R. & Marsch, E., 45.Google Scholar
Marsch, E. 2002, Nonlinear Proc. Geophys., 9, 69.CrossRefGoogle Scholar
Marsch, E., & Tu, C.Y. 1997, Solar Phys., 176, 87.CrossRefGoogle Scholar
Marsch, E., & Tu, C.Y. 2001, JGR, 106, 227.CrossRefGoogle Scholar
Marsch, E., Tu, C.Y., Wilhelm, K., Curdt, W., Schühle, U., & Dammasch, I.E. 1997, ESA-SP-404, 555.Google Scholar
Musielak, Z.E. & Ulmschneider, P. 2002, A&A, 386, 606.Google Scholar
Ofman, L., Nakariakov, V.M., & DeForest, C.E. 1999, ApJ, 514, 441.Google Scholar
Ofman, L., & Aschwanden, M.J. 2002, ApJ, 576, L153.CrossRefGoogle Scholar
Peter, H. 2001, A&A, 374, 1108.Google Scholar
Peter, H. & Judge, P. 1999, ApJ, 522, 1148.CrossRefGoogle Scholar
Nakariakov, V.M., Ofman, L., & Arber, T.D. 2000, A&A, 353, 741.Google Scholar
Nakariakov, V.M. 2003, in Dynamic Sun, ed. Dwivedi, B.N., Cambridge University Press, 314.Google Scholar
Roberts, B., Edwin, P.M., & Benz, A.O. 1984, ApJ, 279, 857.Google Scholar
Roberts, B. 1991, in Advances in Solar System Magnetohydrodynamics, ed. Priest, E. R. & Hood, A. W., Cambridge University Press, 105.Google Scholar
Roberts, B. 1985, in Solar System Magnetic Fields, ed. Priest, E., D. Reidel Publishing Company, 37.Google Scholar
Treumann, R. A., & Baumjohann, W. 1996, Basic Space Plasma Physics, Imperial College Press, London, p. 237.Google Scholar
Seely, J.F., Feldman, U., Schühle, U., Wilhelm, K., Curdt, W., & Lemaire, P. 1997, ApJ, 484, L87.Google Scholar
Solanki, S.K., Lagg, A., Woch, J., Krupp, N., Collados, M. 2003, Nature, 425, 692.Google Scholar
Tu, C. Y., Marsch, E. & Wilhelm, K. & Curdt, W. 1998, ApJ, 503, 475.CrossRefGoogle Scholar
Tu, C. Y., Marsch, E. & Wilhelm, K. 1999, Space Sci. Rev., 87, 331.CrossRefGoogle Scholar
Vocks, C., & Marsch, E. 2001, ApJ, 568, 1030 Walsh, R. 2002, ESA SP-508, 253.CrossRefGoogle Scholar
Wang, T.J., Solanki, S.K., Curdt, W., Innes, D.E., Dammasch, I.E., & Kliem, B. 2003a, A&A, 406, 1105.Google Scholar
Wang, T.J., Solanki, S.K., Innes, D.E., Curdt, W., & Marsch, E. 2003b, A&A, 402, L17.Google Scholar
Wang, T.J. 2003, ESA SP-547, 1.Google Scholar
Wilhelm, K., Marsch, E., Dviwedi, B.N., Hassler, D.M., Lemaire, P., Gabriel, A., & Huber, M.C.E. 1998, ApJ, 500, 1023.CrossRefGoogle Scholar
Wilhelm, K., Dammasch, I.E., Marsch, E., & Hassler, D. 2000, A&A, 353, 749.Google Scholar
Xia, L. Marsch, E., & Curdt, W. 2003, A&A, 399, L5.Google Scholar