Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-29T15:23:05.901Z Has data issue: false hasContentIssue false

“Va-et-Vient” (“Back-and-Forth”) CCD Spectroscopy: A New Way to Increase the Limiting Magnitude of Very Large Telescopes

Published online by Cambridge University Press:  07 August 2017

G. Soucail
Affiliation:
Observatoire Midi-Pyrénées, Toulouse
J. C. Cuillandre
Affiliation:
Observatoire Midi-Pyrénées, Bagnères-de-Bigorre
J. P. Picat
Affiliation:
DEMIRM, Observatoire de Paris
B. Fort
Affiliation:
DEMIRM, Observatoire de Paris

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Over the last decade, the quantity of scientific results brought by the observations of very faint objects has been quite spectacular. In particular, they concern the photometry of faint galaxies up to B = 27 (Tyson 1988) or K = 22 (Cowie et al. 1994). The consequences of these observations are the detection of a large population of faint galaxies more numerous than any prediction given by standard galaxy evolution and probably a new vision of the distant universe. For faint object spectroscopy, the most recent surveys of field galaxies reach a magnitude range of 23–24 (Colless et al. 1990, 1993, Lilly and Cowie 1993, Tresse et al. 1993) with a reasonable S/N ratio that allows a redshift measurement from absorption-line identification. But in this magnitude range, the sky background flux is dominant with respect to the source, being at least 10 times brighter.

Type
Section I — Review Papers
Copyright
Copyright © Kluwer 1995 

References

Boksenberg, A. 1975 in Image Processing Techniques in Astronomy, de Jager, C. and Nieuwenhuizen, H., eds., Reidel, Dordrecht, p. 59.Google Scholar
Colless, M. M., Ellis, R. S., Taylor, K. and Hook, R. N. 1990 MNRAS 244, 408.Google Scholar
Colless, M. M., Ellis, R. S., Broadhurst, T. J., Taylor, K. and Peterson, B. A. 1993 MNRAS 261, 19.CrossRefGoogle Scholar
Cowie, L. L. and Lilly, S. J. 1989 ApJ 336, L41.CrossRefGoogle Scholar
Cowie, L. L., Gardner, J., Wainscoat, R. J. and Hoddap, K. W. 1994, preprint.Google Scholar
Cuillandre, J. C., Fort, B., Picat, J. P., Soucail, G., Altieri, B., Beigbeder, F., Dupin, J. P., Pourthié, T. and Ratier, G. 1994 A&A 281, 603.Google Scholar
Lilly, S. J., Cowie, L. L. and Gardner, J. P. 1991 ApJ 369, 79.CrossRefGoogle Scholar
McLean, I. S., Cormack, W. A., Herd, J. T. and Aspin, C. 1981 Proc. SPIE 290, p. 155.Google Scholar
Picat, J. P., Cuillandre, J. C., Fort, B. and Soucail, G. 1994 Proc. SPIE 2198, Astronomical Telescopes and Instrumentation for the 21st Century, Crawford, D. L., ed., p. 1274.Google Scholar
Shectman, S. A. and Hiltner, W. 1976 PASP 88, 960.Google Scholar
Soucail, G., Mellier, Y., Fort, B., Cailloux, M. and Mathez, G. 1988 A&A 191, L19.Google Scholar
Tresse, L., Hammer, F., Le Fèvre, O. and Proust, D. 1993 A&A 277, 53.Google Scholar
Tyson, J. A. 1988 AJ 96, 1.CrossRefGoogle Scholar