Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-08T13:05:14.837Z Has data issue: false hasContentIssue false

Spiral Galaxies and the Peculiar Velocity Field

Published online by Cambridge University Press:  25 May 2016

Riccardo Giovanelli
Affiliation:
Cornell University, Ithaca, NY, USA
Martha P. Haynes
Affiliation:
Cornell University, Ithaca, NY, USA
Pierre Chamaraux
Affiliation:
Observatoire de Meudon, Meudon, France
Luiz N. Da Costa
Affiliation:
Observatorio Nacional, Rio de Janeiro, Brazil and Institut d'Astrophysique, Paris, France
Wolfram Freudling
Affiliation:
ESO ST–European Coordinating Facility, Garching, Germany
John J. Salzer
Affiliation:
Wesleyan University, Middletown, CT, USA
Gary Wegner
Affiliation:
Dartmouth College, Hanover, NH, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report results of a redshift-independent distance measurement survey that extends to all sky and out to a redshift of approximately 7500 km s−1. Tully–Fisher (TF) distances for a homogeneous sample of 1600 late spiral galaxies are used to analyze the peculiar velocity field. We find large peculiar velocities in the neighborhood of superclusters, such as Perseus–Pisces (PP) and Hydra–Centaurus, but the main clusters embedded in those regions appear to be virtually at rest in the CMB reference frame. We find no compelling evidence for large-scale bulk flows, whereby the Local Group, Hydra–Cen and PP would share a motion of several hundred km s−1 with respect to the CMB. Denser sampling in the PP region allows a clear detection of infall and backflow motions, which can be used to map the mass distribution in the supercluster and to obtain an estimate of the cosmological density parameter.

Type
Part I: Invited Reviews
Copyright
Copyright © Kluwer 1996 

References

1. Aaronson, M., Huchra, J., Mould, J., Schechter, P.L. and Tully, R.B. (1982) Ap. J. 258, 64.CrossRefGoogle Scholar
2. Courteau, S., Faber, S.M., Dressler, A. and Willick, J.A. (1993), Ap. J. (Letters) 412, L51.Google Scholar
3. Giovanelli, R., Haynes, M.P., Salzer, J.J., Wegner, G., da Costa, L.N. and Freudling, W. (1994), Astron. J. 107, 2036.Google Scholar
4. Giovanelli, R., Haynes, M.P., Salzer, J.J., Wegner, G., da Costa, L.N. and Freudling, W. (1995), Astron. J. submitted.Google Scholar
5. Han, M. and Mould, J. (1992), Ap. J. 396, 453.Google Scholar
6. Kogut, A. et al. (1993), ApJ 419, 1.Google Scholar
7. Lauer, T.R. and Postman, M. (1994), ApJ 425, 418.Google Scholar
8. Lilje, P.B. Yahil, A. and Jones, B.T. (1986) Ap. J. 307, 91.Google Scholar
9. Lynden–Bell, D., Faber, S.M., Burstein, D., Davies, R.L., Dressler, A., Terlevich, R.J. and Wegner, G. (1988), Ap. J. 326, 19.Google Scholar
10. Mathewson, D.S., Ford, V.L. and Buchhorn, M. (1992) Ap. J. Suppl. 81, 413.Google Scholar
11. Mathewson, D.S., Ford, V.L. and Buchhorn, M. (1991) Ap. J. (Letters) 389, 1L5.Google Scholar
12. Scaramella, R., Baiesi-Pillastrini, G., Vettolani, G. and Chincarini, G. L. (1989) Nature, 338, 562.Google Scholar
13. Shaya, E. (1984), Ap. J. 280, 470.CrossRefGoogle Scholar
14. Strauss, M.A., Davis, M., Yahil, A. and Huchra, J.P. (1992), Ap. J. 361, 49.CrossRefGoogle Scholar
15. Tammann, G. and Sandage, A. (1985) Ap. J. 294, 81.Google Scholar
16. Willick, J. (1991), Ap. J. (Letters) 351, L5.Google Scholar