Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-11T22:39:09.662Z Has data issue: false hasContentIssue false

A Spin-down Power Threshold for Pulsar Wind Nebula Generation?

Published online by Cambridge University Press:  19 July 2016

E. V. Gotthelf*
Affiliation:
Columbia Astrophysics Laboratory, Columbia University, 505 West 120th Street, New York, NY 10027, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A systematic X-ray survey of the most energetic rotation-powered pulsars known, based on spin-down energy loss rate, shows that all energetic pulsars with Ė > Ėc ≍ 4 × 1036 ergs s−1 are X-ray-bright, manifest a distinct pulsar wind nebula (PWN), and are associated with a supernova event, with over half residing in shell-like supernova remnants. Below Ėc, the 2–10 keV flux ratio FPWN/FPSR decreases by an order-of-magnitude. This threshold is consistent with the lower limit on the spectral slope γmin ≍ 0.6 observed for rotation-powered pulsars (Gotthelf 2003). The apparent lack of bright PWNe below Ėc suggests a change in the particle injection spectrum and serves as a constraint on emission models for rotation-powered pulsars. Neither a young age nor a high density environment is found to be a sufficient condition for generating a PWN, as often suggested, instead Ė is likely the key parameter in determining the evolution of a rotation-powered pulsar.

Type
Part 4: Pulsar Wind Nebulae and Their Environments
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Cohen, N. L., Cotton, W. D., Geldzahler, B. J., & Marcaide, J. M. 1983, ApJ, 264, 273.CrossRefGoogle Scholar
Crawford, C., Gaensler, B. M., Kaspi, V. M., Manchester, R. N., Camilo, F., Lyne, A. G., & Pivovaroff, M. J. 2001, ApJ, 554, 152.CrossRefGoogle Scholar
Finley, J. P., Srinivasan, R., & Park, S. 1996, ApJ, 466, 938.CrossRefGoogle Scholar
Frail, D. A., & Scharringhausen, B. R. 1997, ApJ, 480, 364.CrossRefGoogle Scholar
Gaensler, B. M., Stappers, B. W., Frail, D. A., & Johnston, S. 1998, ApJ, 499, L69.CrossRefGoogle Scholar
Gaensler, B. M., Stappers, B. W., Frail, D. A., Moffett, D. A., Johnston, S., & Chatterjee, S. 2000, MNRAS, 318, 58.CrossRefGoogle Scholar
Gotthelf, E. V., & Kaspi, V. M. 1998, ApJ, 497, L29.CrossRefGoogle Scholar
Gotthelf, E. V., Halpern, J. P., & Dodson, R. 2002, ApJ, 567, L125.CrossRefGoogle Scholar
Gotthelf, E. V. 2003, ApJ, 591, 361.CrossRefGoogle Scholar
Kaspi, V. M., Gotthelf, E. V., Gaensler, B. M., & Lyutikov, M. 2001, ApJ, 562, L163.CrossRefGoogle Scholar
Pacini, F., & Salvati, M. 1973a, ApJ, 186, 249.CrossRefGoogle Scholar
Pacini, F., & Salvati, M. 1973b, Astrophys. Lett., 15, 39.Google Scholar