Skip to main content Accessibility help
×
Home

Self-consistent coupling of radiative transfer and dynamics in dust driven winds

  • Nicole Berruyer (a1), Jean-Pierre J. Lafon (a2) and Stéphane Liberatore (a3)

Abstract

The aim is to determine the role and influence of the hypothesis concerning both dynamics and radiative transfer in models of winds and mass loss of evolved stars, when the radiative force on dust grains plays a major role in the structuration of the circumstellar envelope of the star. The flow is described successively using two models coupling the grains-gas dynamics in a self-consistent way with radiative transfer for two different approaches of the dynamics: the Momentum Coupling Hypothesis and the Full Problem. Complete radiative transfer including multiple scattering, absorption and thermal emission is taken into account. The medium is not necessarily optically thin. In all cases, numerical iterations couple dynamics with transfer. This study emphasizes the importance of the drift velocity between the grains and the gas and the inertia of dust together with hydrodynamics and transfer coupling.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Self-consistent coupling of radiative transfer and dynamics in dust driven winds
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Self-consistent coupling of radiative transfer and dynamics in dust driven winds
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Self-consistent coupling of radiative transfer and dynamics in dust driven winds
      Available formats
      ×

Copyright

References

Hide All
Berruyer, N., Frisch, H. 1983, A&A 126, 269.
Leung, C.M. 1975, ApJ 199, 340.
Liberatore, S., Lafon, J.P.J., Berruyer, N. 2001, A&A 377, 522.

Self-consistent coupling of radiative transfer and dynamics in dust driven winds

  • Nicole Berruyer (a1), Jean-Pierre J. Lafon (a2) and Stéphane Liberatore (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed