Skip to main content Accessibility help
×
Home

ROSAT Spectra of Quasars

  • P. Bühler (a1) (a2), T.J.-L. Courvoisier (a1), R. Staubert (a3), H. Brunner (a3) and G. Lamer (a3)...

Extract

X–ray observations of AGN with Einstein, EXOSAT and Ginga have shown, that the spectra of quasars in the energy range 2 to 10 keV can be approximately described by a single power law model with a photon index of 1.7 to 2.0. They also suggested that a soft X-ray excess component (below ≈ 1 keV) is a common feature in many quasars. In order to investigate whether a soft excess is characteristic for a certain class of objects we analysed the data of the pointed ROSAT PSPC observations of the six radio-loud quasars PG0007+106, PKS0135-247, QSO0537-286, QSO0923+392, PG1225+317, 3C273 and the radio-quiet quasar PG0804+761. In a first step the observed spectra were fitted with an absorbed single power law model. The hydrogen column density was fixed to its galactic value and the normalisation at 1 keV and the spectral index α were the free fit parameters. In order to decide whether a soft component is present in a source, the resulting power law index was compared with the hard X-ray power law index (2–10 keV) determined in the past with other instruments. A steep ROSAT PSPC spectrum indicates the presence of an additional soft X–ray component. In four cases (PKS0135-247, PG0804+761, QSO0923+392, 3C273) we find that the spectra in the PSPC band are considerably steeper than the spectra above 2 keV and therefore suggest the presence of a soft excess. In order to quantify the contribution of the soft excess these spectra were successively fitted with a model containing a hard power law component and an additional soft component described either by a power law, thermal bremsstrahlung or black body model. For the other three members of our sample (0007+106, 0537-286, 1225+317) the fitted power law index is not enhanced. This means that no soft component has been detected, but not necessarily that it does not exist. There are two effects which render more difficult the detection of a soft component in ROSAT spectra, the absorption of photons by interstellar material and the shift of the spectra towards lower energies due to the redshift. Both processes have first an effect on the soft part of the observed spectrum and it is therefore evident, that this leads to a decrease of the sensitivity for soft X–rays of the emitted spectrum. For the three quasars in our sample, where no soft excess has been detected, either the column density (0007+106) or the redshift (0537-286, 1225+317) is especially large and therefore an eventually present soft component could have remained undetected. In these cases we calculated upper limits for the strength of such a soft component (P. Bühler et al., to be published in A&A.)

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      ROSAT Spectra of Quasars
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      ROSAT Spectra of Quasars
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      ROSAT Spectra of Quasars
      Available formats
      ×

Copyright

ROSAT Spectra of Quasars

  • P. Bühler (a1) (a2), T.J.-L. Courvoisier (a1), R. Staubert (a3), H. Brunner (a3) and G. Lamer (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed