Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-28T18:34:03.782Z Has data issue: false hasContentIssue false

Radio and Millimetre Observations of Larger Molecules

Published online by Cambridge University Press:  04 August 2017

L. W. Avery*
Affiliation:
Herzberg Institute of Astrophysics, 100 Sussex Drive Ottawa, Ont., Canada

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The number of known interstellar molecules has increased steadily since 1970 and stands presently at 68. of the molecules discovered in recent years more than half contain three or more heavy elements.

The number of sources where HC5N or HC3N has been detected now includes 21 dark clouds, four circumstellar shells, two bipolar nebulae, the line of sight to the Cas A supernova remnant, and possibly a comet. the more abundant large molecules are useful diagnostic probes, and preliminary statistical equilibrium calculations of the widespread new ring, C3H2, are presented which indicate its usefulness as an indicator of H2 density.

Type
Interstellar Medium
Copyright
Copyright © Reidel 1987 

References

Askne, J., Höglund, B., Hjalmarson, Å, and Irvine, W.M. 1984, Astron. and Astrophys., 130, 311.Google Scholar
Andersson, M., Askne, J., and Hjalmarson, Å. 1984, Astron. and Astrophys., 136, 243.Google Scholar
Avery, L.W. 1980, in IAU Symposium 87, Interstellar Molecules, ed. Andrew, B.H. (Dordrecht: Reidel), p. 47.Google Scholar
Batrla, W., Walmsley, C.M., and Wilson, T.L. 1984, Astron. and Astrophys., 136, 127.Google Scholar
Bell, M.B., Feldman, P.A., Kwok, S., and Matthews, H.E. 1982, Nature, 295, 389.CrossRefGoogle Scholar
Bell, M.B., Feldman, P.A. and Matthews, H.E. 1983, Ap. J. (Letters), 273, L35.Google Scholar
Bell, M.B. and Matthews, H.E. 1985, Ap. J., 291, L63.CrossRefGoogle Scholar
Bell, M.B., Avery, L.W., Matthews, H.E., Feldman, P.A., and Mitchell, G.F. 1986, (in preparation).Google Scholar
Benson, and Myers, 1983, Ap. J., 270, 589.Google Scholar
Broten, N.W., MacLeod, J.M., Avery, L.W., Irvine, W.H., Höglund, B., Friberg, P. and Hjalmarson, Å. 1984, Ap. J. (Letters), 276, L25.Google Scholar
Brown, R.D., Godfrey, P.D., Elmes, P.S., Rodler, M., and Tack, L.M. 1985, J. Am. Chem. Soc., 107, 4112.Google Scholar
Cernicharo, J., Guélin, M., and Askne, J. 1984, Astron. and Astrophys., 138, 371.Google Scholar
Cummins, S.E., Green, S. Thaddeus, P., and Linke, R.A. 1983, Ap. J., 266, 331.Google Scholar
Cummins, S.E., Linke, R.A. and Thaddeus, P. 1986, Ap. J. Supp. (in press).Google Scholar
Feldman, P.A. 1985, Private Communication.Google Scholar
Goss, W.M., Kalberla, P.M.W. and Dickel, H.R. 1984, Astron. and Astrophys., 139, 317.Google Scholar
Green, S. 1980, Ap. J. Supp. 42, 103.Google Scholar
Hasegawa, T., Ohishi, M., Morimoto, M., Suzuki, H., and Kaifu, N. 1984, Icarus, 60, 211.CrossRefGoogle Scholar
Hollis, J.M., Snyder, L.E., Blake, D.H., Lovas, F.J., Suenram, R.D., Ulich, B.L. 1981, Ap. J., 251, 541.CrossRefGoogle Scholar
Jewell, P.R. and Snyder, L.E. 1982, Ap. J. (Letters), 255, L69.Google Scholar
Jewell, P.R. and Snyder, L.E. 1984, Ap. J., 278, 176.CrossRefGoogle Scholar
Johansson, L.E.B., Andersson, C., Elldér, J., Friberg, P., Hjalmarson, Å., Höglund, B., Irvine, W.M., Olofsson, H., and Rydbeck, G. 1985, Astron. and Astrophys. Suppl. (in press).Google Scholar
Johansson, L.E.B., Andersson, C., Elldér, J., Friberg, P., Hjalmarson, Å., Höglund, B., Irvine, W.M., Olofsson, H., and Rydbeck, G. 1984, Astron. and Astrophys., 130, 227.Google Scholar
Kuiper, T.B.H., Rodriguez-Kuiper, E.N., Dickinson, D.F., Turner, B.E., and Zuckerman, B. 1984, Ap. J., 276, 211.Google Scholar
Loren, R.B., Wootten, A. and Mundy, L.G. 1984, Ap. J. (Letters), 286, L23.CrossRefGoogle Scholar
MacLeod, J.M., Avery, L.W. and Broten, N.W. 1984, Ap. J. (Letters), 282, L89.Google Scholar
Matthews, H.E. and Sears, T.J. 1983, Ap. J. (Letters), 267, L45.Google Scholar
Matthews, H.E., and Irvine, W.M., 1985, Ap. J. (Letters), 298, L61.CrossRefGoogle Scholar
Matthews, H.E., Irvine, W.M., Friberg, P., Brown, R.D., Godfrey, P.D. 1984, Nature, 310, 125.CrossRefGoogle Scholar
Matthews, H.E., Friberg, P. and Irvine, W.M. 1985, Ap. J., 290, 609.Google Scholar
Sutton, E.C., Blake, G.A., Masson, C.R., and Phillips, T.G. 1985, Ap. J. Suppl., 58, 341.Google Scholar
Snyder, L.E., Wilson, T.L., Henkel, C., Jewel, P.R., and Walmsley, C.M. 1984, B.A.A.S., 16, 959.Google Scholar
Snyder, L.E., Dykstra, C.E., and Bernholdt, D. 1985, Proc. Conference on ‘Masers, Molecules and Mass Outflows in Star Forming Regions’, Haystack Observatory, ed. Haschick, A., pub. by Lincoln Laboratories.Google Scholar
Thaddeus, P., Cummins, S.E. and Linke, R.A. 1984, Ap. J. (Letters), 283, L49.Google Scholar
Thaddeus, P., Gottlieb, C.A., Hjalmarson, Å., Johansson, L.E.B., Irvine, W.M., Friberg, P. and Linke, R.A. 1985a, Ap. J. (Letters), 294, L49.Google Scholar
Thaddeus, P., Vrtilek, J.M., and Gottlieb, C.A. 1985b, Ap. J. (Letters), 299, in press.CrossRefGoogle Scholar
Walmsley, C.M., Jewell, P.R., Snyder, L.E., and Winnewisser, G. 1984, Astron. and Astrophys., 134, L11.Google Scholar
Zuckerman, B., Gilra, D.P., Turner, B.E., Morris, M., and Palmer, P. 1976, Ap. J. (Letters), 205, L15.CrossRefGoogle Scholar