Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-17T14:02:51.710Z Has data issue: false hasContentIssue false

Multiplicity of Massive Stars

Published online by Cambridge University Press:  13 May 2016

Thomas Preibisch
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D–53121 Bonn, Germany
Gerd Weigelt
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D–53121 Bonn, Germany
Hans Zinnecker
Affiliation:
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D–14482 Potsdam, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss the observed multiplicity of massive stars and implications on theories of massive star formation. After a short summary of the literature on massive star multiplicity, we focus on the O-and B-type stars in the Orion Nebula Cluster, which constitute a homogenous sample of very young massive stars. 13 of these stars have recently been the targets of a bispectrum speckle interferometry survey for companions. Considering the visual and also the known spectroscopic companions of these stars, the total number of companions is at least 14. Extrapolation with correction for the unresolved systems suggests that there are at least 1.5 and perhaps as much as 4 companions per primary star on average. This number is clearly higher than the mean number of ∼ 0.5 companions per primary star found for the low-mass stars in the general field population and also in the Orion Nebula cluster. This suggests that a different mechanism is at work in the formation of high-mass multiple systems in the dense Orion Nebula cluster than for low-mass stars.

Type
III. Main Sequence Binary Statistics
Copyright
Copyright © Astronomical Society of the Pacific 2001 

References

Abt, H. A. 1983, ARAA, 21, 343.Google Scholar
Abt, H. A., Gomez, A. E., & Levy, S. G. 1990, ApJS, 74, 551.CrossRefGoogle Scholar
Abt, H. A., Wang, R., & Cardona, O. 1991, ApJ, 367, 155.CrossRefGoogle Scholar
Bonnell, I. A. 2000, in ASP Conf. Ser. Vol. 198, Stellar Clusters and Associations: Convection, Rotation, and Dynamos, ed. Pallavicini, R., Micela, G. & Sciortino, S., (San Francisco: ASP), 161.Google Scholar
Bonnell, I. A., Bate, M. R., & Zinnecker, H. 1998, MNRAS, 298, 93.Google Scholar
Bossi, M., Gaspani, A., Scardia, M., & Tadini, M. 1989, A&A, 222, 117.Google Scholar
Brown, A. G. A., de Geus, E. J., & de Zeeuw, P. T. 1994, A&A, 289, 101.Google Scholar
Duquennoy, A., & Mayor, M. 1991, A&A, 248, 485.Google Scholar
Fischer, D. A., & Marcy, G. W. 1992, ApJ, 396, 178.Google Scholar
Genzel, R., & Stutzki, J. 1989, ARA&A, 27, 41.Google Scholar
Ghez, A.M., McCarthy, D. W., Patience, J.L., Beck, T.L. 1997, ApJ, 481, 378.Google Scholar
Herbig, G. H., & Terndrup, D. M. 1986, ApJ, 307, 609.Google Scholar
Hillenbrand, L. A. 1997, AJ, 113, 1733.Google Scholar
Hillenbrand, L. A., & Hartmann, L. W. 1998, ApJ, 492, 540.Google Scholar
Hillenbrand, L. A., Strom, S. E., et al. 1998, AJ, 116, 1816.CrossRefGoogle Scholar
Kenyon, S. J., & Hartmann, L. W. 1995, ApJS, 101, 117.CrossRefGoogle Scholar
Köhler, R., & Leinert, Ch. 1998, A&A, 331, 977.Google Scholar
Kroupa, P., Petr, M. G., & Mc Caughrean, M. J. 1999, NewAstr, 4, 495.Google Scholar
Leinert, Ch., Zinnecker, H., Weitzel, N., et al. 1993, A&A, 278, 129.Google Scholar
Leinert, Ch., Richichi, A., & Haas, M. 1997, A&A, 318, 472.Google Scholar
Levato, H., & Abt, H. A. 1976, PASP, 88, 712.Google Scholar
Mardling, R. A. 1995, ApJ, 450, 732.CrossRefGoogle Scholar
Mason, B. D., Gies, D. R., Hartkopf, W. I., et al. 1998, AJ, 115, 821.Google Scholar
McCaughrean, M. J., & Stauffer, J. R. 1994, AJ, 108, 1382.CrossRefGoogle Scholar
Morrell, N., & Levato, H. 1991, ApJS, 75, 965.Google Scholar
Padgett, D. L., Strom, S. E., & Ghez, A. 1997, AJ, 477, 705.CrossRefGoogle Scholar
Petr, M. G., Du Foresto, V., & Beckwith, S. V. W. 1998, ApJ, 500, 825.CrossRefGoogle Scholar
Preibisch, Th., Balega, Y., Hofmann, K.-H., Weigelt, G., & Zinnecker, H. 1999, NewAstr, 4, 531.Google Scholar
Prosser, C. F., Stauffer, J. R., Hartmann, L., et al. 1994, ApJ, 421, 517.CrossRefGoogle Scholar
Reipurth, B., & Zinnecker, H. 1993, A&A, 278, 81.Google Scholar
Scalo, J. 1998, in ASP Conf. Ser. Vol. 142, The Stellar Initial Mass Function, ed. Gilmore, G. & Howell, D., (San Francisco: ASP), 201.Google Scholar
Schultz, A. S. B., Colgan, S. W. J., Erickson, E. F., et al. 1999, ApJ, 511, 282.CrossRefGoogle Scholar
Simon, M., Close, L. M., & Beck, T. L. 1999, AJ, 117, 1375.Google Scholar
Stahler, S. W., Palla, F., & Ho, P. T. P. 1999, in Protostars and Planets IV, ed. Mannings, V., Boss, A. & Russel, S., (Univ. of Arizona Press), in press.Google Scholar
Walter, F. M., Alcalá, J. M., Neuhäuser, R., Sterzik, M., & Wolk, S. J. 1999, in Protostars and Planets IV, ed. Mannings, V., Boss, A. & Russel, S., (Univ. of Arizona Press), in press.Google Scholar
Weigelt, G. 1977, Opt Commun., 21, 55.Google Scholar
Weigelt, G., Balega, Y., Preibisch, Th., Schertl, D., Schöller, M., & Zinnecker, H. 1999, A&A, 347, L15.Google Scholar
Yorke, H. W. 1993, in ASP Conf. Ser. Vol. 35, Massive Stars, Their Lives in the Interstellar Medium, ed. Cassinelli, J. & Churchwell, E., (San Francisco: ASP), 45.Google Scholar
Yorke, H. W., & Krügel, E. 1977, A&A, 54, 183.Google Scholar