Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T10:06:01.290Z Has data issue: false hasContentIssue false

Measurements of The Primordial D/H Abundance Towards Quasars

Published online by Cambridge University Press:  25 May 2016

David Tytler
Affiliation:
Center for Astrophysics and Space Sciences; University of California, San Diego; MS 0424; La Jolla; CA 92093-0424
John M. O'Meara
Affiliation:
Center for Astrophysics and Space Sciences; University of California, San Diego; MS 0424; La Jolla; CA 92093-0424
Nao Suzuki
Affiliation:
Center for Astrophysics and Space Sciences; University of California, San Diego; MS 0424; La Jolla; CA 92093-0424
Dan Lubin
Affiliation:
Center for Astrophysics and Space Sciences; University of California, San Diego; MS 0424; La Jolla; CA 92093-0424
Scott Burles
Affiliation:
Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637
David Kirkman
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07574

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Big Bang Nucleosynthesis (BBN) is the synthesis of the light nuclei, Deuterium (D or 2H), 3He, 4He and 7Li during the first few minutes of the universe. In this review we concentrate on recent data which give the primordial deuterium (D) abundance.

We have measured the primordial D/H in gas with very nearly primordial abundances. We use the Lyman series absorption lines seen in the spectra of quasars. We have measured D/H towards three QSOs, while a fourth gives a consistent upper limit. All QSO spectra are consistent with a single value for D/H: 3.325+0.22−0.25X10−5. From about 1994 − 1996, there was much discussion of the possibility that some QSOs show much higher D/H, but the best such example was shown to be contaminated by H, and no other no convincing examples have been found. Since high D/H should be much easier to detect, and hence it must be extremely rare or non-existent.

The new D/H measurements give the most accurate value for the baryon to photon ratio, η, and hence the cosmological baryon density: ωb = 0.0190 ± 0.0009 (1σ) A similar density is required to explain the amount of Lyα absorption from neutral Hydrogen in the intergalactic medium (IGM) at redshift z ≃ 3, and to explain the fraction of baryons in local clusters of galaxies. The D/H measurements lead to predictions for the abundances of the other light nuclei, which generally agree with measurements. The remaining differences with some measurements can be explained by a combination of measurement and analysis errors or changes in the abundances after BBN. The measurements do not require physics beyond the standard BBN model. Instead, the agreement between the abundances is used to limit the non-standard physics.

Type
3. Abundances of D, 3He and 4He
Copyright
Copyright © Astronomical Society of the Pacific 2000 

References

Turner, M.S., in “The Proc. of Particle Phys. and the Universe” ed. Caldwell, D.O. astro-ph/9904359 (AIP, Woodbury, NY, 1999).Google Scholar
Kolb, E.W., and Turner, M.S., “The Early Universe”, (Addison Wesley 1990).Google Scholar
Reeves, H., Audouze, J., Fowler, W. & Schramm, D. N., Astrophys. J. 179, 909 (1973).CrossRefGoogle Scholar
Wagoner, R. V., Astrophys. J. 179, 343 (1973).Google Scholar
Gnedin, N. Y. & Ostriker, J. P., Astrophys. J. 486, 581 (1997).Google Scholar
Jedamzik, K. & Fuller, G.M., Astrophys. J. 452, 33 (1995).Google Scholar
Epstein, R.I., Lattimer, J.M. & Schramm, D.N., Nature 263, 198 (1976).Google Scholar
Boyd, R.N., Ferland, G.J. & Schramm, D.N., Astrophys. J. 336, L1 (1989).Google Scholar
Jedamzik, K. & Fuller, G.M., Astrophys. J. 483, 560 astro-ph/9609103(1997).Google Scholar
Tytler, D., Fan, X. M., & Burles, S., Nature 381, 207 (1996).Google Scholar
Audouze, J., in “Nucleosynthesis & Chemical Evolution” Saas-Fee, p.433 (Geneva Observatory, 1986).Google Scholar
Vidal-Madjar, A. & Gry, C. Astron. Astrophys. 138, 285 (1984) 179, L57 (1973).Google Scholar
Adams, T.F., Astron. Astrophys. 50, 461 (1976).Google Scholar
Webb, J. K., Carswell, R.F., Irwin, M.J. & Penston, M.V. Mon. Not. Roy. Astr. Soc. 250, 657 (1991)CrossRefGoogle Scholar
Chaffee, F. H., Foltz, C. B., Roser, H.-J., Weymann, R. J., & Latham, D. W., Astrophys. J. 292, 362 (1985).CrossRefGoogle Scholar
Chaffee, F. H., Foltz, C. B., Bechtold, J. & Weymann, R. J. Astrophys. J. 301, 116 (1986).Google Scholar
Carswell, R. F., Rauch, M., Weymann, R. J., Cooke, A. J., & Webb, J. K., Mon. Notes R. Astron. Soc. 268, L1 (1994).Google Scholar
Vogt, S. S., et al., Proc. SPIE, 2198, 362 (1994).CrossRefGoogle Scholar
Burles, S. & Tytler, D., Astrophys. J. 499, 699 astro-ph/9712108 (1998a).Google Scholar
Burles, S. & Tytler, D., Astrophys. J. 507, 732 astro-ph/9712109 (1998b).CrossRefGoogle Scholar
Kirkman, D., Tytler, D., Burles, S., Lubin, D., & O'Meara, J., Astrophys. J., 529, 655, astro-ph/9907128 (2000).CrossRefGoogle Scholar
O'Meara, J.M., Tytler, D., Prochaska, J.X., Burles, S., Kirkman, D., Lubin, D., Suzuki, N. Wolfe, A.M. in preparation Google Scholar
Webb, J. K., Carswell, R. F., Lanzetta, K. M., Ferlet, R., Lemoine, M., Vidal-Madjar, A., & Bowen, D. V. Nature 388, 250 (1997a).Google Scholar
Webb, J. K., et al., preprint, astroph 9710089 (1997b).Google Scholar
Levshakov, S.A., Kegel, W.H., & Takahara, F., astro-ph/9812114 (1998).Google Scholar
Tytler, D., et al., Astrophys. J. 117, 63 astro-ph/9810217 (1999).Google Scholar
Molaro, P., Bonifacio, P., Centurion, M., Vladilo, G., Astron. Astrophys. 349, no. 1, L1316 (1999).Google Scholar
Levshakov, S.A., Agafonova, I.I. & Kegel, W.H. 2000b, Astron. Astrophys. in preparation astro-ph/9911261.Google Scholar
Songaila, A., Cowie, L. L., Hogan, C. J. & Rugers, M., Nature 368, 599 (1994).Google Scholar
Burles, S., Kirkman, D. & Tytler, D., Astrophys. J., 519, 18 (1999c).Google Scholar
Tosi, M., Steigman, G., Matteucci, F. & Chiappini, C., Astrophys. J. 498, 226 (1998).Google Scholar
Vangiono-Flam, E. & Cassé, M., Astrophys. J. 441, 729 (1995).Google Scholar
Timmes, F. X., Truran, J. W., Lauroesch, J. T. & York, D.G., Astrophys. J. 476, 464 (1997).Google Scholar
Scully, S. Cassé, M., Olive, K. A. & Vangioni-Flam, E., Astrophys. J. 476, 521 astroph/9607106 (1997).Google Scholar
Olive, K. A., 19th Texas Symposium on Relativistic Astrophysics and Cosmology, Paris 1998, astro-ph/9903309 (1999b).Google Scholar
Schramm, D. N. & Turner, M. S., Rev. Mod. Phys 70, 303318 (1998).Google Scholar
Audouze, J., in conference “Galactic Evolution…” Meudon, (1998).Google Scholar
Burles, S. & Tytler, D., Astron. J. 114, 1330 astro-ph/9707176 (1997).Google Scholar
Fixen, D.J. et al. ApJ 473, 576 (1996)CrossRefGoogle Scholar
Burles, S., Nollett, K.M., Truran, J.N. & Turner, M.S., Phys. Rev. Lett. 82, 4176 (1999) astro-ph/9901157 (1999b).Google Scholar