Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-21T00:34:17.792Z Has data issue: false hasContentIssue false

Mass Determinations and Dark Matter at Intermediate Scales

Published online by Cambridge University Press:  04 August 2017

J. P. Ostriker*
Affiliation:
Princeton University Observatory, Princeton, NJ 08544

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The issue of “dark matter” in astronomy is extremely confusing. Difficulties exist on two levels. First there are the, in principle, straightforward scientific questions of measurement. A certain region of space is studied, and by some technique, the mass within it is determined. Separately the energy output in some wavelength band from the region is measured and then, with due allowance for distance uncertainties, a “mass-to-light” ratio is determined. These measurements are difficult, with the results affected both by small number statistical uncertainties (as when using globular clusters to determine the mass of the galactic halo), measurement errors (as with binary galaxies), and systematic questions of interpretation (as with X-ray emitting gas around galaxies). Ultimately, with patience and skill these problems have been reduced and, as we shall see in subsequent sections of this report, there exists moderate agreement among observers concerning the large mass (∼ 1012 M) and high mass-to-light ratio (M/LB > 100 M/L) for material integrated over distances in the range (30 kpc < r < 300 kpc) from the centers of giant galaxies.

Type
Review Paper
Copyright
Copyright © Reidel 1987 

References

Babcock, H. W. 1939, Lick Obs. Bull., 19, 41.Google Scholar
Barnes, J. 1985, M.N.R.A.S., 215, 517.CrossRefGoogle Scholar
Binney, J. and Cowie, L. L. 1981, Ap. J., 247, 464.CrossRefGoogle Scholar
Canizares, C. 1982. Ap. J., 263, 508.CrossRefGoogle Scholar
Einasto, J., Kaasik, A. and Saar, E. 1974, Preprint #1 of Tartu Observatory.Google Scholar
Faber, S. and Gallagher, J. 1979, Ann. Rev. Astron. & Astroph., 17, 135.CrossRefGoogle Scholar
Fabricant, D., Lecar, M. and Gorenstein, P. 1980, Ap. J., 241, 552.CrossRefGoogle Scholar
Forman, W., Jones, C. and Tucker, , 1986, Ap. J. (in press).Google Scholar
Hartwick, F. D. A. and Sargent, W. L. W. 1978, Ap. J., 221, 512.CrossRefGoogle Scholar
Hodge, P. W. 1966, Ap. J., 144, 869.CrossRefGoogle Scholar
Huchra, J., Lathan, D. and Davis, M. 1983, M.N.R.A.S., 203, 701.Google Scholar
Kahn, F. D. and Woltjer, L. 1959, Ap. J., 130, 105.CrossRefGoogle Scholar
Lynden-Bell, D., Cannon, R. D. and Godwin, P. J. 1983, M.N.R.A.S., 204, 87P.CrossRefGoogle Scholar
Mamon, G. 1985, , Princeton University.Google Scholar
Muzhotsky, R. 1985, private communication.Google Scholar
Ostriker, J. P., Peebles, P. J. E., and Yahil, A. 1974, Ap. J. (Lett.), 193, L1.CrossRefGoogle Scholar
Davis, M. and Peebles, P. J. E. 1983, Ap. J., 267, 465.CrossRefGoogle Scholar
Peterson, S. D. 1979, Ap. J., 232, 20.CrossRefGoogle Scholar
Peterson, R. 1985, Ap. J., 297, 309.CrossRefGoogle Scholar
Roberts, M. S. and Rots, A. H. 1973, Astron. & Astroph., 26, 483.Google Scholar
Russell, H. N. 1937, Scientific American, 84, 76.CrossRefGoogle Scholar
Sandage, A. 1986 (preprint).Google Scholar
Schwarzschild, M. 1954, A. J., 59, 273.CrossRefGoogle Scholar
Turner, E. L. 1976, Ap. J., 208, 304.CrossRefGoogle Scholar
Turner, E. L. and Ostriker, J. P. 1977, Ap. J., 217, 24.CrossRefGoogle Scholar
Tyson, T., Valdes, F., Jarvis, J. F. and Mills, A. P. 1984, Ap. J., (Lett.), 281, L59.CrossRefGoogle Scholar
Vietri, M. and Ostriker, J. P. 1983, Ap. J., 267, 488.CrossRefGoogle Scholar
Wyse, A. B. and Mayall, N. J. 1942, Ap. J., 95, 24.CrossRefGoogle Scholar
Yahil, A. 1977, Ap. J., 217, 27.CrossRefGoogle Scholar
Zwicky, F. 1937, Ap. J., 86, 217.CrossRefGoogle Scholar