Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-06T11:52:14.120Z Has data issue: false hasContentIssue false

Masers in Circumstellar Shells

Published online by Cambridge University Press:  04 August 2017

C. M. Walmsley*
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 5300 Bonn 1, F.R.G.

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Presumably due to a cosmic accident, circumstellar masers are almost exclusively found in oxygen rich stars with [0/C] >1. The exception here is the SiS maser found towards IRC 10216 (Henkel et al. (1985)) but I will ignore this in what follows and concentrate this review upon the circumstellar shells where OH, H2O, and SiO masers are found in profusion. Such objects are thought to be on the asymptotic giant branch (AGB) of the Herzsprung-Russell diagram and show evidence for rapid mass loss. The derived mass loss rates vary from approximately 10−7 solar masses per year for the optically well studied Mira variables in the solar neighbourhood (Distances <1 kpc) to as high as 10−4 solar masses per year for the optically invisible OH-IR stars and for some supergiants. of these objects, the supergiants appear to be more luminous than the rest (105 L rather than 104 L) and their central stars have masses of order 10 M as compared to most Mira variables whose mass is probably in the range 1–2 M. Most OH-IR stars are likely to be a late stage in the evolution of solar mass type objects where the mass loss rate suddenly increases. As their name indicates, they are characterised by their strong OH-maser (1612 MHz) emission as well as by their radiation at far infrared wavelengths (20–50 μ). They may well be on the way to becoming planetary nebulae (see Pottasch, 1984 for an account of their probable evolution).

Type
Circumstellar Shells
Copyright
Copyright © Reidel 1987 

References

Baud, B., Habing, H. J. (1983) Astron. Astrophys. 127, 73 Google Scholar
Bowers, P. F. (1985) in “Mass loss from red giants” (ed. Morris, M., Zuckerman, B.), Astrophysics and Space Sci. Library, publ. D. Reidel Google Scholar
Bowers, P. F., Hagen, W. (1984) Astrophys. J. 285, 637 Google Scholar
Bowers, P. F., Johnston, K. J., Spencer, J. H. (1983) Astrophys. J. 274, 733 Google Scholar
Bujarrabal, V., Guibert, J., Nguyen-Q-Rieu, , Omont, A. (1980) Astron. Astrophys. 84, 311 Google Scholar
Cooke, B., Elitzur, M. (1985) Astrophys. J. 295, 175 Google Scholar
Deguchi, S. (1977) Publ. Astron. Soc. Japan 29, 669 Google Scholar
Deguchi, S., Goldsmith, P. F. (1985) Nature 317, 336 Google Scholar
Diamond, P. J., Norris, R. P., Rowland, P. R., Booth, R. S., Nyman, L.-A. (1985) Mon. Not. Roy. Astr. Soc. 212, 1 Google Scholar
Elitzur, M. (1981) in “Physical processes in Red Giants”, p. 363, (ed. Iben, I., Renzini, A.) (publ. D. Reidel)Google Scholar
Elitzur, M., Goldreich, P., Scoville, N. (1976) Astrophys. J. 205, 384 Google Scholar
Engels, D., Habing, H. J., Olnon, F. M., Schmid-Burgk, J., Walmsley, C. M. (1984) Astron. Astrophys. 140, L9 Google Scholar
Engels, D., Schmid-Burgk, J., Walmsley, C. M. (1986) Astron. Astrophys. (submitted) Google Scholar
Glassgold, A. E., Huggins, P. J. (1985) in “The M, S, and C stars”, (ed. Johnson, H. R., Querci, F.) (publ. NASA and CNRS)Google Scholar
Goldreich, P., Scoville, N. (1976) Astrophys. J. 205, 144 Google Scholar
Henkel, C., Matthews, H. E., Morris, M., Terebey, S., Fich, M. (1985) Astron. Astrophys. 147, 143 Google Scholar
Herman, J., Habing, H. J. (1985) Reports on progress in Physics (in press) Google Scholar
Huggins, P. J., Glassgold, A. E. (1982) Astron. J. 87, 1828 Google Scholar
Jewell, P. R., Walmsley, C. M., Wilson, T. L., Snyder, L. E. (1985) Astrophys. J. 298, L55 Google Scholar
Knapp, G. R. (1985) Astrophys. J. 293, 273 Google Scholar
Knapp, G. R., Chang, K. M. (1985) Astrophys. J. 293, 281 Google Scholar
Knapp, G. R., Morris, M. (1985) Astrophys. J. 292, 640 Google Scholar
Kwan, J., Scoville, N. (1974) Astrophys. J. 194, L97 Google Scholar
Lane, A. P. (1984) in “VLBI and compact radio sources”, IAU Symposium no. 110, p. 329, (ed. Fanti, R., Kellermann, K., Setti, G.) (publ. D. Reidel, Dordrecht)Google Scholar
Langer, S. H., Watson, W. D. (1984) Astrophys. J. 284, 751 Google Scholar
Lucas, R., Omont, A., Guilloteau, S., Rieu, N-Q. (1986) Astron. Astrophys. (Lett.) in press Google Scholar
Morris, M., Redman, R., Reid, M. J., Dickinson, D. (1979) Astrophys. J. 229, 257 Google Scholar
Nyman, L. A., Olofsson, H. (1986) Astron. Astrophys. (in press) Google Scholar
Olnon, F. M. (1981) in “Physical processes in Red Giants”, p. 237, (ed. Iben, I., Renzini, A.) (publ. D. Reidel)Google Scholar
Olofsson, H. (1985) in Proceedings of ESO-IRAM-Onsala Workshop on “(Sub)Millimeter Astronomy” (ed. Shaver, P. A., Kjär, K.), ESO Conference Proceedings no. 22 Google Scholar
Pottasch, S. R. (1984) “Planetary Nebulae” Vol. 107 in Astrophysics and Space Sci. Library (publ. D. Reidel, Dordrecht)Google Scholar
Reid, M. J., Muhleman, D. O., Moran, J. M., Johnston, K. J., Schwarz, P. R. (1977) Astrophys. J. 214, 60 Google Scholar
Scalo, J., Slavsky, D. B. (1980) Astrophys. J. Lett. 239, L73 Google Scholar
Sopka, R. J., Hildebrand, R., Jaffe, D. T., Gatley, I., Roellig, T., Werner, M., Jura, M., Zuckerman, B. (1985) Astrophys. J. 294, 242 Google Scholar
Ukita, N., Morris, M. (1983) Astron. Astrophys. 121, 15 Google Scholar