Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-cs4hf Total loading time: 0.231 Render date: 2021-04-14T22:24:54.346Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Low-Mass Versus High-Mass Star Formation

Published online by Cambridge University Press:  25 May 2016

T. W. Hartquist
Affiliation:
Max-Planck-Institute für extraterrestrische Physik, D-85740 Garching, Germany
J. E. Dyson
Affiliation:
Department of Physics and Astronomy, The University of Leeds, Leeds. LS2 9JT, UK

Abstract

Structures like the clumps identified in the CO maps of the Rosette Molecular Cloud and the dense cores such as those in B5, a cluster of cores and young low-mass stars, are key to considerations of star formation. Whether star formation is a self-inducing process or one that causes itself to turn off depends greatly on whether the responses of the interclump and intercore media to young stars cause the collapse of clumps or cores to be faster than their ablation. We present a naive introduction to the lengthscales over which such responses are significant, mention ways in which the responses might induce collapse, review some of the little that is known of how flows of media around clumps and cores ablate them, and then return to the issue of the lengthscales over which such responses are significant by considering the global properties of mass-loaded flows in clumpy star forming regions.

Type
V. Low- and High-Mass Protostars and Their Environment
Copyright
Copyright © Kluwer 1997 

References

Arons, J., Max, C. E., 1975, Astrophys. J., 196, L77.CrossRefGoogle Scholar
Arthur, S. J., Henney, W. J., 1996, Astrophys. J., 457, 752.CrossRefGoogle Scholar
Bertoldi, F., McKee, C. F., 1990, Astrophys. J., 354, 529.CrossRefGoogle Scholar
Charnley, S. B., Dyson, J. E., Hartquist, T. W., Williams, D. A., 1990, Mon. Not. R. ast. Soc., 243, 405.Google Scholar
Chièze, J. P., Lazareff, B., 1981, Astron.&Astrophys., 95, 194.Google Scholar
Cioffi, D. F., McKee, C. F., Bertschinger, E., 1988, Astrophys. J., 334, 252.CrossRefGoogle Scholar
Cowie, L. L., McKee, C. F., Ostriker, J. P., 1981, Astrophys. J., 247, 908.CrossRefGoogle Scholar
Dyson, J. E., Hartquist, T. W., 1987, Mon. Not. R. ast. Soc., 228, 453.CrossRefGoogle Scholar
Dyson, J. E., 1968, Astrophys. Space Sci., 1, 388.CrossRefGoogle Scholar
Dyson, J. E., 1994, in Ray, T. P., Beckwith, S. V. W., eds, Star Formation and Techniques in Infrared and mm Astronomy. Springer-Verlag: Berlin, 93.CrossRefGoogle Scholar
Dyson, J. E., Hartquist, T. W., Biro, S., 1993, Mon. Not. R. ast. Soc., 261, 430.CrossRefGoogle Scholar
Dyson, J. E., Williams, R. J. R., Redman, M. P., 1995, Mon. Not. R. ast. Soc., 277, 700.CrossRefGoogle Scholar
Elmegreen, B. G., Lada, C. J., 1977, Astrophys. J., 214, 725.CrossRefGoogle Scholar
Elmegreen, B. G., 1979, Astrophys. J., 232, 729.CrossRefGoogle Scholar
Goldsmith, P. F., Langer, W. D., Wilson, R., 1986, Astrophys. J., 303, L11.CrossRefGoogle Scholar
Hartquist, T. W., Dyson, J. E., Williams, R. J. R., 1997, Astrophys. J., In press.Google Scholar
Hartquist, T. W., Dyson, J. E., Pettini, M., Smith, L. J., 1986, Mon. Not. R. ast. Soc., 211, 715.CrossRefGoogle Scholar
Hartquist, T. W., Rawlings, J. M. C., Williams, D. A., Dalgarno, A., 1993, Quart. J. R. ast. Soc., 34, 213.Google Scholar
Hirahara, Y., Suzuki, H., Yamamoto, S., Kawaguchi, K., Ohishi, M., Takano, S., Ishikawa, S. I., Masuda, A., 1992, Astrophys. J., 394, 539.CrossRefGoogle Scholar
Kahn, F. D., 1969, Physica, 41, 172.CrossRefGoogle Scholar
Klein, R. I., McKee, C. F., Colella, P., 1994, Astrophys. J., 420, 213.CrossRefGoogle Scholar
Kulsrud, R., Pearce, W. A., 1969, Astrophys. J., 156, 445.CrossRefGoogle Scholar
Lefloch, B., Lazareff, B., 1995, Astron.&Astrophys., 289, 559.Google Scholar
Lefloch, B., Lazareff, B., 1996, Astron.&Astrophys., 301, 552.Google Scholar
MacLow, M. M., McKee, C. F., Klein, R. I., Stone, J. M., Norman, M. L., 1994, Astrophys. J., 433, 757.CrossRefGoogle Scholar
McKee, C. F., Ostriker, J. P., 1977, Astrophys. J., 215, 213.CrossRefGoogle Scholar
McKee, C. F., 1989, Astrophys. J., 345, 782.CrossRefGoogle Scholar
Mouschovias, T. C., Psaltis, D., 1995, Astrophys. J., 444, L105.CrossRefGoogle Scholar
Mouschovias, T. C., Spitzer, L. Jr., 1976, Astrophys. J., 210, 326.CrossRefGoogle Scholar
Mouschovias, T. C., 1987, in Morfill, G. E., Scholer, M., eds, Physical Processes in Interstellar Clouds. Reidel: Dordrect, 413.Google Scholar
Myers, P. C., Benson, D. J., 1983, Astrophys. J., 266, 309.CrossRefGoogle Scholar
Myers, P. C., 1990, in Hartquist, T. W., ed, Molecular Astrophysics - A Volume Honouring Alexander Dalgarno. Cambridge University Press: Cambridge, 328.CrossRefGoogle Scholar
Nejad, L. A. M., Hartquist, T. W., 1994, Astrophys. Space Sci., 220, 253.CrossRefGoogle Scholar
Nittmann, J., Falle, S. A. E. G., Gaskell, P. H., 1982, Mon. Not. R. ast. Soc., 201, 833.CrossRefGoogle Scholar
Oppenheimer, M., Dalgarno, A., 1974, Astrophys. J., 192, 29.CrossRefGoogle Scholar
Rawlings, J. M., Hartquist, T. W., 1997, Astrophys. J., In press.Google Scholar
Redman, M. P., Williams, R. J. R., Dyson, J. E., Hartquist, T. W., Fernandez, B. R., 1997, Astron.&Astrophys., Submitted.Google Scholar
Schilke, P., Keene, J., Le Bouret, J., Pineau des Forêts, G., Roueff, E. G., 1995, Astron.&Astrophys., 294, L17.Google Scholar
Shu, F. H., Adams, F. C., Lizano, S., 1987, Ann. Rev. Astron. Astrophys., 25, 84.CrossRefGoogle Scholar
Sutherland, R. S., Hartquist, T. W., Bally, J., Dyson, J. E., 1997, Astrophys. J., Submitted.Google Scholar
Tedds, J. A., Brand, P. W. J. L., Brand, M. G., Chrysostomou, A., Fernandes, A. J. L., 1996, in Millar, T. J., Raga, A. C., eds, Shocks in Astrophysics. Kluwer: Dordrect, 39.Google Scholar
Umebayashi, T., Nakano, T., 1980, PASJ, 32, 405.Google Scholar
van Dishoek, E. F., 1987, in Vardya, M. S., Tarafdar, S. P., eds, IAU Symposium 120 -Astrochemistry. Reidel: Dordrect, 51.Google Scholar
White, R. L., Long, K. S., 1991, Astrophys. J., 373, 543.CrossRefGoogle Scholar
Williams, J. P., Blitz, L., Stark, A. A., 1995, Astrophys. J., 451, 252.CrossRefGoogle Scholar
Williams, R. J. R., Dyson, J. E., Redman, M. P., 1996, Mon. Not. R. ast. Soc., 280, 667.Google Scholar
Williams, D. A., Hartquist, T. W., Caselli, P., 1996, Mon. Not. R. ast. Soc., 282, 900.CrossRefGoogle Scholar
Williams, R. J. R., Hartquist, T. W., Dyson, J. E., 1995, Astrophys. J., 446, 759.CrossRefGoogle Scholar
Williams, D. A., Hartquist, T. W., Whittet, D. C. B., 1992, Mon. Not. R. ast. Soc., 258, 599.CrossRefGoogle Scholar
Wiseman, J. J., Ho, P. T., 1996, Nature, 382, 139.CrossRefGoogle Scholar
Woodward, P. R., 1976, Astrophys. J., 196, 555.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 50 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 14th April 2021. This data will be updated every 24 hours.

You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Low-Mass Versus High-Mass Star Formation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Low-Mass Versus High-Mass Star Formation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Low-Mass Versus High-Mass Star Formation
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *