Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-30T16:30:27.337Z Has data issue: false hasContentIssue false

Loops: Twisting and Scaling

Published online by Cambridge University Press:  26 May 2016

Robert W. Walsh*
Affiliation:
Centre for Astrophysics, University of Central Lancashire, Preston, Lancashire PR1 2HE, UK

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Loop-like structures are the fundamental magnetic building blocks of the solar atmosphere. Recent space-based EUV and X-ray satellite observations (from Yohkoh, SOHO and TRACE) have challenged the view that these features are simply static, gravitationally stratified plasma pipes. Rather, it is now surmised that each loop may consist of a bundle of fine plasma threads that are twisted around one another and can brighten independently. This invited paper will outline the latest developments in “untangling” the topology of these features through observational analysis and magnetohydrodynamic modelling. In particular, recent interest has centred on how the observed thermal profile along loops can be employed as a tool to diagnose any localised energy input to the structure and hence constrain the presence of a particular coronal heating mechanism. The implications of superior resolution plasma thread observations (whether spatial, temporal or spectral) from future space missions (SolarB, STEREO, Solar Dynamics Observatory and Solar Orbiter) will be discussed.

Type
Part 10: Structural Elements: Magnetic Loops
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Aschwanden, M.J., Newmark, J. S., & Delaboudinière, J.-P., Neupert, W.M.; Klimchuk, J. A., Gary, G. A., Portier-Fozzani, F., & Zucker, A. 1999, ApJ, 515, 842.CrossRefGoogle Scholar
Aschwanden, M.J., Alexander, D., Hurlburt, N., Newmark, J.S., Neupert, W.M., Klimchuck, J.A., & Gary, G.A. 2000a, ApJ, 531, 1129.CrossRefGoogle Scholar
Aschwanden, M.J., Nightingale, R.W., & Alexander, D. 2000b, ApJ, 541, 1059.CrossRefGoogle Scholar
Aschwanden, M., & Schrijver, C. J. 2002, ApJS, 142, 269.CrossRefGoogle Scholar
Aschwanden, M., Schrijver, C. J., & Alexander, D. 2001, ApJ, 550, 1036.CrossRefGoogle Scholar
Aulanier, G., & 11 co-authors 2000, Adv in Space Res., 26, 485.CrossRefGoogle Scholar
Chae, J., Park, Y.-D., Moon, Y.-J, Wang, H., & Yun, H.S. 2002 ApJ, 567, L159.CrossRefGoogle Scholar
Close, R.M., Parnell, C.E., Mackay, D.H., & Priest, E.R. 2003, Solar Phys., 212, 251.CrossRefGoogle Scholar
Cook, J.W., Cheng, C.-C., Jacobs, V.L., & Antiochos, S.K. 1989, ApJ, 338, 1176.CrossRefGoogle Scholar
Falconer, D.A., Gary, G.A., Moorw, R.L., & Porter, J.G. 2000, ApJ, 528, 1004.CrossRefGoogle Scholar
Fisher, G. H., Longcope, D. W., Metcalf, T. R., & Pevtsov, A. 1998 ApJ, 508, 885.CrossRefGoogle Scholar
Fludra, A., & Ireland, J. 2003, A&A, 398, 297.Google Scholar
Glover, A., Harra, L.K., Matthews, S.A., & Foley, C.A. 2003, A&A, 400, 759.Google Scholar
Golub, L., Maxson, C., Rosner, R., Serio, S., & Vaiana, G.S. 1980, ApJ, 238, 343.CrossRefGoogle Scholar
Hagenaar, H.I. 2001, ApJ, 555, 448.CrossRefGoogle Scholar
Ireland, J., Wills-Davey, M., & Walsh, R. W. 1999, Solar Phys., 190, 207.CrossRefGoogle Scholar
Klimchuk, J.A. 2000, Solar Phys., 193, 53.CrossRefGoogle Scholar
Lenz, D.D., DeLuca, E.E., Golub, L., Rosner, R., Bookbinder, J. A., Litwin, C., Reale, F., & Peres, G. 1999, Solar Phys., 190, 131.CrossRefGoogle Scholar
Mackay, D.M., Galsgaard, K., Priest, E. R., & Foley, C. R. 2000, Solar Phys. 193, 93.CrossRefGoogle Scholar
Mandrini, C. H., Démoulin, P., & Klimchuk, J. A. 2000, ApJ, 530, 999.CrossRefGoogle Scholar
Martens, P.C.H., Cirtain, J.W., & Schmelz, J.T. 2002, ApJ, 577, L115.CrossRefGoogle Scholar
Nightingale, R.W., Aschwanden, M.J., & Hurlburt, N.E. 1999, Solar Phys., 190, 249.CrossRefGoogle Scholar
Peres, G. 2000, Solar Phys., 193, 33.CrossRefGoogle Scholar
Priest, E.R., Foley, C. R., Heyvaerts, J., Arber, T. D., Mackay, D., Culhane, J. L., & Acton, L. W. 2000, ApJ, 539, 1002.CrossRefGoogle Scholar
Priest, E.R., Heyvaerts, J., & Title, A. 2002, ApJ, 576, 533.CrossRefGoogle Scholar
Reale, F. 2002, ApJ, 580, 566.CrossRefGoogle Scholar
Reale, F., Peres, G., Serio, S., Betta, R.M., DeLuca, E.E., & Golub, L. 2000a, ApJ, 535, 412.CrossRefGoogle Scholar
Reale, F., Peres, G., Serio, S., Betta, R.M., DeLuca, E.E., & Golub, L. 2000b, ApJ, 535, 423.CrossRefGoogle Scholar
Régnier, S., Amari, T., & Kersalé, E. 2002, A&A, 392, 1119.Google Scholar
Rosner, R., Tucker, W. H., & Vaiana, G. S. 1978, ApJ, 220, 643.CrossRefGoogle Scholar
Schmelz, J.T., Scopes, R.T., Cirtain, J.W., Winter, H.D., & Allen, J.D. 2001, ApJ, 556, 896.CrossRefGoogle Scholar
Schmelz, J.T. 2002, ApJ, 578, L161.CrossRefGoogle Scholar
Serio, S., Peres, G., Vaiana, G. S., Golub, L., & Rosner, R. 1981, ApJ, 243, 288.CrossRefGoogle Scholar
Spadaro, D., Lanza, A.F., Lanzafame, A.C., Karpen, J.T., Antiochos, S.K., Klimchuk, J.A., & MacNeice, P.J. 2003, ApJ, 582, 486.CrossRefGoogle Scholar
Testa, P., Peres, G., Reale, F., & Orlando, S. 2002, ApJ, 580, 1159.CrossRefGoogle Scholar
Vaiana, G.S., & Rosner, R. 1978, ARA&A, 16, 393.Google Scholar
Walsh, R. W. 1999, ESA SP-446, 687.Google Scholar
Walsh, R. W. 2002, ESA SP-508, 335.Google Scholar
Walsh, R. W., Bell, G.E., & Hood, A.W. 1997, Solar Phys., 171, 81.CrossRefGoogle Scholar
Warren, H.P., Winebarger, A.R., & Hamilton, P.S. 2002, ApJ, 579, L41.CrossRefGoogle Scholar
Winebarger, A.R., Warren, H.P., Van Ballegooijen, A., DeLuca, E.E., & Golub, L. 2002, ApJ, 567, L89.CrossRefGoogle Scholar