Hostname: page-component-68945f75b7-76l5x Total loading time: 0 Render date: 2024-08-06T05:35:30.063Z Has data issue: false hasContentIssue false

Lensing Diagnostics of Halo Substructure

Published online by Cambridge University Press:  26 May 2016

Shude Mao*
Affiliation:
Jodrell Bank Observatory, University of Manchester, Macclesfield, Cheshire SK11 9DL, UK

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Cold Dark Matter (CDM) hierarchical structure formation theory predicts substructures in dark matter halos. the number of predicted subhalos seems to exceed the observed number of luminous satellite galaxies. Gravitational lenses can be used to probe luminous or dark substructures. Image positions and flux ratios in broad-band (including radio and optical) and emission lines can all be used to probe substructures on different mass scales. the observed gravitational lenses appear to require a few percent of the mass surface density in substructures within the mass range of 104M − 109M. Numerical simulations predict roughly the same mass fraction in substructures within the virialised region. But at typical image positions (a few percent of the virial radius), the predicted surface mass density in substructures appears to be lower than required. Both observations and numerical simulations are somewhat uncertain at present so it is not yet clear whether the discrepancy is severe.

Type
Part 3: Central Density Cusps, Thin Disks, and Dark Halo Substructure
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Biggs, A. et al. 2003, MNRAS, submitted.Google Scholar
Bradac, M., et al. 2002 A&A, 388, 373.Google Scholar
Browne, I. W. A., et al. 2003, MNRAS, 341, 13.CrossRefGoogle Scholar
Chen, J., Kravtsov, A. V., & Keeton, C. R. 2003, preprint (astro-ph/0302005).Google Scholar
Chiba, M. 2002, ApJ, 565, 17.CrossRefGoogle Scholar
Dalal, N., & Kochanek, C. S. 2002, ApJ, 572, 25.CrossRefGoogle Scholar
Evans, N. W., & Witt, H. J. 2003, MNRAS, 345, 1351.CrossRefGoogle Scholar
Ghigna, S., et al. 2000, ApJ, 544, 616.CrossRefGoogle Scholar
Jing, Y. P., & Suto, Y. 2000, ApJ, 529, L69.CrossRefGoogle Scholar
Jing, Y. P., & Suto, Y. 2002, ApJ, 574, 538.CrossRefGoogle Scholar
Kauffmann, G., White, S. D. M., & Guiderdoni, B. 1993, MNRAS, 264, 201.CrossRefGoogle Scholar
Keeton, C. R. 2003, ApJ, 584, 664.CrossRefGoogle Scholar
Klypin, A., Kravtsov, A. V., & Valenzuela, O. 1999, ApJ, 522, 82.CrossRefGoogle Scholar
Kochanek, C. S., & Dalal, N. 2003a, AIP Conf. Proc. 666, 103.CrossRefGoogle Scholar
Kochanek, C. S., & Dalal, N. 2003b, preprint (astro-ph/0302036).Google Scholar
Koopmans, L. V. E., et al. 2002, MNRAS, 334, 39.CrossRefGoogle Scholar
Lacey, C. G., & Ostriker, J. P. 1985, ApJ, 299, 633.CrossRefGoogle Scholar
Mao, S., & Schneider, P. 1998, MNRAS, 295, 587.CrossRefGoogle Scholar
Mao, S., Jing, Y. P., Ostriker, J. P., & Weller, J. 2003, ApJ, submitted.Google Scholar
Metcalf, R. B. 2002, 580, 696.Google Scholar
Metcalf, R. B., & Madau, P. 2001, ApJ, 563, 9.CrossRefGoogle Scholar
Metcalf, R. B., & Zhao, H. S. 2002, ApJ, 567, L5.CrossRefGoogle Scholar
Metcalf, R. B., et al. 2003, astro-ph/0309738.Google Scholar
Moore, B., Ghigna, S., & Governato, F. et al. 1999, ApJ, 524, L19.CrossRefGoogle Scholar
Moustakas, L. A., & Metcalf, R. B. 2003, MNRAS, 339, 607.CrossRefGoogle Scholar
Myers, S. T., et al. 2003, MNRAS, 341, 1.CrossRefGoogle Scholar
Schechter, P. L., & Wambsganss, J. 2002, ApJ, 580, 685.CrossRefGoogle Scholar
Schechter, P. L., & Wambsganss, J. 2003, astro-ph/0309163.Google Scholar
Spergel, D. N. S., et al. 2003, ApJS, 148, 175.CrossRefGoogle Scholar
Springel, V., et al. 2001, MNRAS, 328, 726.CrossRefGoogle Scholar
van den Bosch, F. C., Burkert, A., & Swaters, R. A. 2001, MNRAS, 326, 1205.CrossRefGoogle Scholar
Xu, G., & Ostriker, J. P. 1994, ApJ, 437, 184.CrossRefGoogle Scholar