Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T06:56:16.201Z Has data issue: false hasContentIssue false

Is the Dynamical History at Odds with the Chemical History?

Published online by Cambridge University Press:  25 May 2016

F. Matteucci*
Affiliation:
Dipartimento di Astronomia, Universita' di Trieste, Via G.B. Tiepolo, 11 TRIESTE

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The paper of Eggen, Lynden-Bell and Sandage (1962)(hereafter ELS) titled “Evidence from the motion of old stars that the Galaxy collapsed” was the first attempt to understand the formation and evolution of our Galaxy. From a study of a kinematically selected sample of high velocity stars, ELS had found a remarkable correlation between chemical abundance and orbital eccentricity, in the sense that stars with the largest ultraviolet excess (a measure of stellar metallicity, in particular Fe), i.e. the lowest metallicity, are invariably moving in highly elliptical orbits. As the average < [Fe/H] > (in the usual notation [Fe/H] = log(Fe/H)log(Fe/H)⊙) is expected to increase with time, as a consequence of the progressive chemical enrichment of the gas, stars with the lowest [Fe/H] are, on average, the oldest. ELS also found a correlation between abundance and motion of stars perpendicular to the Galactic plane. This correlation suggests a continuous decrease of the perpendicular velocity with decreasing [Fe/H]. To explain these relations ELS proposed that the Galaxy collapsed from a protocloud to a thin disk on a timescale of a few times 108 years, with progressive chemical enrichment as the collapse proceeded. This model was subsequently criticized mainly because of selection effects in their data, i.e. given the data available to ELS one would not expect the sample to contain low abundance, low orbital eccentricity objects even if they existed. They would be absent from the high velocity catalog they used. In addition, the ELS simple model did not account for the fact that almost half of the halo stars have retrograde orbits. This fact led Larson (1969) to consider models of clumpy and turbulent protogalaxies with collapse times that sometimes exceeded 1 Gyr.

Type
Chapter 5: How Did the Milky Way Form?
Copyright
Copyright © Kluwer 1996 

References

Bessel, M.S., Sutherland, R.S., Ruan, K. (1991) Ap. J. , 383, L7 Google Scholar
Bolte, M. (1987) Ap. J. , 319, 760 Google Scholar
Buonanno, R., Corsi, C.E., Fusi Pecci, F., Fahlam, G.G., Richer, H. (1994), Ap. J. Lett. , 430, 121 Google Scholar
Burkert, A., Truran, J.W., Hensler, G. (1992) Ap. J. , 391, 651 Google Scholar
Edmunds, M.G., Greenhow, R.M., Johnson, D., Kluckers, V., Vila, M.B. (1991) M.N.R.A.S. 251, 33P Google Scholar
Edvardsson, B., and Ersen, J., Gustafsson, B., Lambert, D.L., Nissen, P.E., Tomkin, J. (1993) A.A. , 275, 101 Google Scholar
Eggen, O.J., Lynden-Bell, D., Sandage, A.R. (1962) Ap. J. , 136, 748 Google Scholar
Ferrini, F., Matteucci, F., Pardi, C., Penco, U. (1992) Ap. J. , 385, 138 Google Scholar
François, P. Matteucci, F. (1993) A.A. , 280, 136 Google Scholar
Fuchs, B., Dettbarn, C., Wielen, R. (1994) Ergodic Concepts in Stellar Dynamics , eds. Pfenninger, D. and Gurzadyan, V.G. (Springer-Verlag)Google Scholar
Geisler, D., Friel, E.D. (1992) Astron. J. , 104, 128 CrossRefGoogle Scholar
Gilmore, G., Reid, N. (1983) M.N.R.A.S. , 202, 1025 CrossRefGoogle Scholar
Gilmore, G., Wyse, R.F.G. (1985) Astr. J. , 90, 2015 Google Scholar
Gilmore, G., Wyse, R.F.G., Kuijken, K. (1989) Evolutionary Phenomena in Galaxies , eds. Beckman, J.E. and Pagel, B.E.J., (Cambridge University Press), p.172 Google Scholar
Grenon, M. (1987) J. Astrophys. Astr. , 8, 123 Google Scholar
Katz, N. (1992) Ap. J. , 391, 502 CrossRefGoogle Scholar
Larson, R.B. (1969) M.N.R.A.S. , 145, 405 Google Scholar
Larson, R.B. (1976) M.N.R.A.S. , 176, 31 CrossRefGoogle Scholar
Marquez, A., Schuster, W.J. (1994) preprint Google Scholar
Matteucci, F., Brocato, E. (1990) Ap. J. , 365, 539 Google Scholar
Matteucci, F., François, P. (1992) A. A. , 262, L1 Google Scholar
Matteucci, F., François, P. (1989) M.N.R.A.S. , 239, 886 Google Scholar
Matteucci, F., Tornambè, A. (1985) A. A. , 142, 13 Google Scholar
Mc William, A., Rich, R.M. (1994) Ap.J. Suppl. , 749 Google Scholar
Minniti, D. (1993) Ph.D. Thesis, Steward Observatory, University of Arizona Google Scholar
Norris, J.E. (1986) Ap. J. Suppl. , 61, 667 Google Scholar
Pardi, C., Ferrini, F., Matteucci, F. (1994) Ap. J. , in press Google Scholar
Renzini, A. (1994) A.A. , 285, L5 Google Scholar
Rich, R.M. (1988) Astron. J. , 95, 828 CrossRefGoogle Scholar
Ryan, S.G., Norris, J.E. (1991) Astron. J. , 101, 1835 Google Scholar
Sandage, A. (1987) The Galaxy , eds. Gilmore, G. and Carswell, B., (Reidel, Dordrecht), p.321 Google Scholar
Sandage, A. (1990) J.R.A.S.C. , 84, 70 Google Scholar
Sandage, A., Fouts, G. (1987) Astron. J. , 93, 74 Google Scholar
Schuster, W.J., Nissen, P.E. (1989) A.A. , 222, 69 Google Scholar
Searle, L., Zinn, R. (1978) Ap. J. , 225, 357 Google Scholar
VandenBergh, D.A., Bolte, M., Stetson, P.B. (1990) Astron. J. , 100, 445 Google Scholar
Wielen, R. (1977) A.A. , 60, 263 Google Scholar
Wielen, R., Fuchs, B. (1985) IAU N. 106 , The Milky Way Galaxy, eds. van Woerden, H. et al., (Reidel, Dordrecht) p.481 Google Scholar
Wielen, R., Dettbarn, C., Fuchs, B., Jahreiss, H., Radons, G. (1992) IAU Symp. 149 , The Stellar Populations of Galaxies, p.81 Google Scholar
Wilson, T.L., Matteucci, F. (1992) Astron. Astrophys. Rev. , 4,1 Google Scholar
Wyse, R.F.G., Gilmore, G. (1993) ASP Conf. Series N.48 , The Globular Cluster-Galaxy Connection, eds. Brodie, J. and Smith, G. Google Scholar
Yoshii, Y., Saio, H. (1979) Publ. Astron. Soc. Japan , 31, 339 Google Scholar
Zinn, R. (1985) Ap. J. , 293, 424 Google Scholar
Zinn, R. (1993) ASP Conf. Series No. 48 , The Globular Cluster-Galaxy Connection, eds. Brodie, J. and Smith, G., p. 38 Google Scholar