Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-19T20:28:36.974Z Has data issue: false hasContentIssue false

How to Model the Chemical Evolution of Galaxies

Published online by Cambridge University Press:  07 August 2017

Joachim Köppen*
Affiliation:
Institut für Theoretische Physik und Sternwarte, Olshausenstr. 40, D-W-2300 Kiel, F.R.G.

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a first interpretation of the comparison of observational data, the crude “Simple Model” of chemical evolution is quite useful. Since it has well been described in the literature (e.g. Pagel and Patchett 1975, Tinsley 1980), let us here just review the assumptions and whether they are satisfied:

  1. 1. The galaxy is a closed system, with no exchange of matter with its surroundings: For the solar neighbourhood this probably is not true (the infamous Gdwarf-“problem”, Pagel 1989b). For the Magellanic Clouds this is most certainly wrong, because of the presence of the Inter-Cloud Region and the Magellanic Stream, and evidence for interaction with each other and the Galaxy as well (cf. e.g. Westerlund 1990).

  2. 2. It initially consists entirely of gas (without loss of generality of primordial composition): This is good approximation also for models with gas infall, as long as the infall occurs with a time scale shorter than the star formation time scale.

  3. 3. The metal production of the average stellar generation (the yield y) is constant with time: Initially, it is reasonable to make this assumption. For tables of the oxygen yield see Koppen and Arimoto (1991).

  4. 4. The metal rich gas ejected by the stars is completely mixed with the ambient gas. To neglect the finite stellar life times (“instantaneous recycling approximation”) is appropriate for elements synthesized in stars whose life time is much shorter than the star formation time scale, such as oxygen, neon, sulphur, and argon.

  5. 5. The gas is well mixed at all times: We don't know. The dispersion of H II region abundances may give an indication. In the Magellanic Clouds Dufour (1984) finds quite a low value (±0.08 dex for oyxgen).

Type
VI. Planetary Nebulae in Galactic Systems
Copyright
Copyright © Kluwer 1993 

References

References:

Arimoto, N., Tarrab, I.: 1990, Astron. Astrophys. 228, 6 Google Scholar
Dufour, R.J.: 1984, IAU Symposium 108, 353 Google Scholar
Gerola, H., Seiden, P.E., Schulman, L.S.: 1980, Astrophys. J. 242, 517 CrossRefGoogle Scholar
Götz, M., Köppen, J.: 1992, Astron. Astrophys. , in press Google Scholar
Köppen, J.: 1992, Astron. Astrophys. , submitted Google Scholar
Köppen, J., Arimoto, N.: 1990a, Chemical and Dynamical Evolution of Galaxies , Proc. Elba Intern. Phys. Centre, ed. Ferrini, F., Franco, J., Matteucci, F., ETS editrice, Pisa Google Scholar
Köppen, J., Arimoto, N.: 1990b, Astron. Astrophys. 240, 22 Google Scholar
Köppen, J., Arimoto, N.: 1991, Astron. Astrophys. Suppl. 87, 109 Erratum: Astron. Astrophys. Suppl. 89, 420 Google Scholar
Lequeux, J., Peimbert, M., Rayo, J.F., Serrano, A., Torres-Peimbert, S.: 1979, Astron. Astrophys. 80, 155 Google Scholar
Matteucci, F., Chiosi, C.: 1983, Astron. Astrophys. 123, 121 Google Scholar
Pagel, B.E.J.: 1989a, Rev. Mex. Astron. Astr of. 18, 161 Google Scholar
Pagel, B.E.J.: 1989b, Evolutionary Phenomena in Galaxies , Proc. Advanced Study Inst., eds. Beckman, J.E. and Pagel, B.E.J., Cambridge University Press, Cambridge, p. 201 Google Scholar
Pagel, B.E.J., Patchett, B.E.: 1975, Mon. Notices Roy. Astron. Soc. 172, 13 Google Scholar
Pagel, B.E.J., Edmunds, M.G., Fosbury, R. A. E., Webster, B.L.: 1978, Mon. Notices Roy. Astron. Soc. 184, 569 Google Scholar
Rocca-Volmerange, B., Lequeux, J., Maucherat-Joubert, M.: 1981, Astron. Astrophys. 104, 177 Google Scholar
Rich, R.M.: 1988, Astron. J. 95, 828 CrossRefGoogle Scholar
Richtler, T.: 1992, New Aspects of Magellanic Cloud Research , eds. Baschek, B., Klare, G., Lequeux, J., Springer, Heidelberg, in press Google Scholar
Searle, L., Sargent, W.L.W., Bagnuolo, W.G.: 1973, Astrophys. J. 179, 427 CrossRefGoogle Scholar
Struck-Marcell, C., Scalo, J.M.: 1987, Astrophys. J. 64, 39 Google Scholar
Theis, C., Burkert, A., Hensler, G.: 1992, Astron. Astrophys. , submitted Google Scholar
Tinsley, B.M.: 1980, Fund. Cos. Phys. 5, 287 Google Scholar
Twarog, B. A.: 1980, Astrophys. J. 242, 242 Google Scholar
Wayte, S.R.: 1991, IAU Symposium 148, 447 Google Scholar
Westerlund, B.E.: 1990, Astron. Astrophys. Rev. 2, 29 Google Scholar
Wilmes, M., Köppen, J.: 1991, Evolution of Interstellar Matter and Dynamics of Galaxies , CTS Workshop 1, Prague, ed. Palouš, J., Cambridge University Press, Cambridge, in press Google Scholar