Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-21T12:22:50.288Z Has data issue: false hasContentIssue false

Halo/Thick Disk CVS and the Cosmic X-Ray Background

Published online by Cambridge University Press:  25 May 2016

Jonathan E. Grindlay
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138
Eyal Maoz
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In a recent study (Maoz and Grindlay 1995) we have found that a number of previously recognized anomalies in the diffuse x-ray background at soft energies (~0.5-2 keV) can be understood if about 20-30% of the diffuse flux arises from a population of low luminosity sources in a thick disk or flattened halo distribution in the Galaxy. Here we summarize our results and review the arguements that these objects are not accreting neutron stars or black holes but rather white dwarfs (i.e. CVs) which may have been produced in a primordial population of disrupted globular clusters.

Type
Part II: Contributed Papers
Copyright
Copyright © Kluwer 1996 

References

Barcons, X., & Fabian, A.C. 1988, MNRAS, 230, 189.Google Scholar
Boyle, B.J., Griffiths, R.E., Shanks, T., Stewart, G.C., & Georgantopoulos, I. 1993, MNRAS, 260, 49.Google Scholar
Finley, J. P. 1994, to appear in Proceedings of the ROSAT Science Symposium.Google Scholar
Giacconi, R. et al 1979, ApJ, 234, L1.Google Scholar
Grindlay, J.E., 1984, Adv.Space.Res., 3, 19.CrossRefGoogle Scholar
Grindlay, J.E. 1994a, in Evolution of X-Ray Binaries, eds. Hott, S. & Day, C., AIP Conf.Proc., 308, 339.Google Scholar
Grindlay, J.E. 1994b, in Millisecond Pulsars: Decade of Surprise, ASP Conf. Proc., Aspen Workshop, eds. Fruchter, A., Tavani, M., Backer, D., in press.Google Scholar
Hamilton, T.T., & Helfand, D.J. 1987, ApJ, 318, 93.Google Scholar
Hasinger, G., Burg, R., Giacconi, R., Hartner, G., Schmidt, M., Trümper, J., & Zamorani, G. 1993, A&A, 275, 1 (H93).Google Scholar
Hertz, P., & Grindlay, J.E. 1984, ApJ, 278, 137.Google Scholar
Hertz, P., Bailyn, C.D., Grindlay, J.E., Garcia, M.R., Cohn, H., & Lugger, P.M. 1990, ApJ, 364, 251.Google Scholar
Howell, S.B., & Szkody, P. 1990, ApJ, 356, 623.Google Scholar
Kashyap, V., Rosner, R., Schramm, D. & Truran, J. 1994, Submitted to ApJ.Letters.Google Scholar
Lacey, C.G. and Ostriker, J.P. 1985, ApJ, 299, 633.Google Scholar
Maoz, E. and Grindlay, J.E. 1995, ApJ, in press (May 1, 1995).Google Scholar
Mather, J. et al. 1990, ApJ, 354, L37.Google Scholar
Narayan, R. and Yi, I. 1994, preprint.Google Scholar
Ogelman, H., Finley, J.P., & Zimmerman, H.U. 1993, Nature, 361, 136.Google Scholar
Ogelman, H. 1994, to be published in Lives of Neutron stars, NATO ASI, Kemer, Turkey.Google Scholar
Soltan, A.M., 1991, MNRAS, 250, 241.Google Scholar
Verbunt, F. et al. 1994, A&A, in press.Google Scholar