Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-phmbd Total loading time: 0.27 Render date: 2022-07-04T16:52:03.812Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Global Evolution of the Stars, Gas, Metals, and Dust in Galaxies

Published online by Cambridge University Press:  19 July 2016

S. Michael Fall*
Affiliation:
Space Telescope Science Institute 3700 San Martin Drive, Baltimore, MD 21218, USA

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We outline a method to infer the global history of star formation in galaxies from absorption-line observations of quasars. The application to existing data leads to the conclusion that most stars formed at relatively low redshifts (z ≲ 2). The results obtained by this absorption-based method are consistent with those obtained subsequently by emission-based methods.

Type
Conference Papers in order of Presentation
Copyright
Copyright © 2002 

References

Connolly, A.J., Szalay, A.S., Dickinson, M., SubbaRao, M.U., & Brunner, R.J. 1997, ApJ, 486, L11.CrossRefGoogle Scholar
Fall, S.M., Chariot, S., & Pei, Y.C. 1996, ApJ, 464, L43.CrossRefGoogle Scholar
Fall, S.M., & Pei, Y.C. 1993, ApJ, 402, 479.CrossRefGoogle Scholar
Gallego, J., Zamorano, J., Aragón-Salamanca, A., & Rego, M. 1995, ApJ, 455, L1.CrossRefGoogle Scholar
Ge, J., & Bechtold, J. 1997, ApJ, 477, L73.CrossRefGoogle Scholar
Hartwick, F.D.A. 1976, ApJ, 209, 418.CrossRefGoogle Scholar
Hauser, M.G. 1996, in Unveiling the Cosmic Infrared Background, ed. Dwek, E. (Woodbury: Am. Inst. Phys.), 11.Google Scholar
Kennicutt, R.C. 1989, ApJ, 344, 685.CrossRefGoogle Scholar
Kulkarni, V.P., Fall, S.M., & Truran, J.W. 1997, ApJ, 484, L7.CrossRefGoogle Scholar
Lanzetta, K.M., Wolfe, A.M., & Turnshek, D.A. 1995, ApJ, 440, 435.CrossRefGoogle Scholar
Larson, R.B. 1972, Nature Phys. Sci., 236, 7.CrossRefGoogle Scholar
Le Brun, V., Bergeron, J., Boissé, P., & Deharveng, J.M. 1997, A&A, 321, 733.Google Scholar
Levshakov, S.A., Chaffee, F.H., Foltz, C.B., & Black, J.H. 1992, A&A, 262, 385.Google Scholar
Lilly, S.J., Le Fèvre, O., Hammer, F., & Crampton, D. 1996, ApJ, 460, L1.CrossRefGoogle Scholar
Lu, L., Sargent, W.L.W., Barlow, T.A., Churchill, C.W., & Vogt, S.S. 1996, ApJS, 107, 475.CrossRefGoogle Scholar
Madau, P., Ferguson, H.C., Dickinson, M.E., Giavalisco, M., Steidel, C.C., & Fruchter, A. 1996, MNRAS, 283, 1388.CrossRefGoogle Scholar
Madau, P., Pozzetti, L., & Dickinson, M. 1998, ApJ, in press (astro-ph/9708220).Google Scholar
Pagel, B.E.J. 1997, Nucleosynthesis and Chemical Evolution of Galaxies (Cambridge: Cambridge University Press).Google Scholar
Pei, Y.C., & Fall, S.M. 1995, ApJ, 454, 69.CrossRefGoogle Scholar
Pei, Y.C., Fall, S.M., & Bechtold, J. 1991, ApJ, 378, 6.CrossRefGoogle Scholar
Perna, R., Loeb, A., & Bartelmann, M. 1997, ApJ, 488, 550.CrossRefGoogle Scholar
Pettini, M., King, D.L., Smith, L.J., & Hunstead, R.W. 1997a, ApJ, 478, 536.CrossRefGoogle Scholar
Pettini, M., Smith, L.J., Hunstead, R.W., & King, D.L. 1994, ApJ, 426, 79.CrossRefGoogle Scholar
Pettini, M., Smith, L.J., King, D.L., & Hunstead, R.W. 1997b, ApJ, 486, 665.CrossRefGoogle Scholar
Puget, J.-L., Abergel, A., Bernard, J.-P., Boulanger, F., Burton, W.B., Désert, F.-X., & Hartmann, D. 1996, A&A, 308, L5.Google Scholar
Shaver, P.A., Wall, J.V., Kellerman, K.I., Jackson, C.A., & Hawkins, M.R.S. 1996, Nature, 384, 439.CrossRefGoogle Scholar
Smette, A., Claeskens, J.-F., & Surdej, J. 1997, New Astronomy, 2, 53.CrossRefGoogle Scholar
Storrie-Lombardi, L.J., McMahon, R.G., & Irwin, M.J. 1996, MNRAS, 283, L79.CrossRefGoogle Scholar
Vladilo, G. 1998, ApJ, 493, 583.CrossRefGoogle Scholar
Welty, D.E., Lauroesch, J.T., Blades, J.C., Hobbs, L.M., & York, D.G. 1997, ApJ, 489, 672.CrossRefGoogle Scholar
Wolfe, A.M., Lanzetta, K.M., Foltz, C.B., & Chaffee, F.H. 1995, ApJ, 454, 698.CrossRefGoogle Scholar
You have Access

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Global Evolution of the Stars, Gas, Metals, and Dust in Galaxies
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Global Evolution of the Stars, Gas, Metals, and Dust in Galaxies
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Global Evolution of the Stars, Gas, Metals, and Dust in Galaxies
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *