Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-29T10:00:19.630Z Has data issue: false hasContentIssue false

The Formation of First Generation Stars and Globular Clusters in Protogalactic Clouds

Published online by Cambridge University Press:  19 July 2016

D.N.C. Lin
Affiliation:
Lick Observatory, Univ. of California, Santa Cruz, CA 95064
S.D. Murray
Affiliation:
Lawrence Livermore Nat'l Lab., L-23, Livermore, CA 94550

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Within collapsing protogalaxies, thermal instability leads to the formation of a population of cool fragments which are confined by the pressure of a residual hot background medium. The critical mass required for the cold clouds to become gravitationally unstable and to form stars is determined by both their internal temperature and external pressure. Massive first generation stars form in primordial clouds with sufficient column density to shield themselves from external UV photons emitted by nearby massive stars or AGNs. Less massive photoionized clouds gain mass as they undergo cohesive collisions with each other, and lose mass due to ram pressure stripping by the residual halo gas. Collisions may also trigger thermal instability and fragmentation into cloudlets. While most cloudlets have substellar masses, the largest become self-gravitating and collapse to form protostellar cores without further fragmentation. The initial stellar mass function is established as these cores capture additional residual cloudlets. Energy dissipation from the mergers ensures that the cluster remains bound in the limit of low star formation efficiency. Dissipation also promotes the formation and retention of the most massive stars in the cluster center. On the scale of the protogalactic clouds, the formation of massive stars generates intense UV radiation which photoionizes gas and quenches star formation in nearby regions. As gas density accumulates in the center of the the galactic potential, the self regulated star formation rate increases. At the location where most of the residual gas can be converted into stars on its internal dynamical timescale, a galaxy attains its asymptotic kinematic structure such as exponential profiles, Tully-Fisher, and Faber-Jackson laws.

Type
Conference Papers in order of Presentation
Copyright
Copyright © 2002 

References

Aarseth, S.J., Lin, D.N.C., & Papaloizou, J.C.B. 1988, ApJ, 324, 288.Google Scholar
Binney, J. J. 1977, ApJ, 215, 483.CrossRefGoogle Scholar
Blumenthal, G. R., Faber, S. M., Primack, J. R., & Rees, M. J. 1984, Nature , 311, 517.CrossRefGoogle Scholar
Bonner, W. B. 1956, MNRAS, 116, 356.Google Scholar
Caselli, P. & Myers, P.C. 1995, ApJ, 446, 665.CrossRefGoogle Scholar
Dalgarno, A., & McCray, R. A. 1972, ARAA, 10, 375.Google Scholar
Field, G. B. 1965, ApJ, 142, 531.CrossRefGoogle Scholar
Goodman, A.A., Jones, T.J., Lada, E.A., Myers, P.C. 1995, ApJ 448, 748.CrossRefGoogle Scholar
Greene, T.P., Wilking, B.A., André, P., Young, E., & Lada, C.J. 1994, ApJ, 434, 614.Google Scholar
Heiles, C., Goodman, A.A., & McKee, C.F. 1993 in Protostars and planet III , eds. Levy, E. H. & Lunine, J. I. (Tucson: Univ. Arizona Press), 279.Google Scholar
Holtzman, J. A., et al. 1992, AJ, 103, 691.CrossRefGoogle Scholar
Hoyle, F. 1953, ApJ, 118, 513.CrossRefGoogle Scholar
Lada, C. J., Lada, E. A., Clemens, D. P., & Bally, J. 1994, ApJ, 429, 694.CrossRefGoogle Scholar
Lada, C. J., Margulis, M., & Dearborn, D. 1984, ApJ, 285, 141.CrossRefGoogle Scholar
Lada, E. A. 1992, ApJL, 1992, 393, L25.Google Scholar
Lada, E. A., DePoy, D. L., Evans, N. J., & Gatley, I. 1991, ApJ, 371, 171.CrossRefGoogle Scholar
Lada, E.A. & Lada, C.J. 1995, AJ, 109, 1684.Google Scholar
Larson, R. B. 1974, MNRAS, 169, 229.Google Scholar
Larson, R. B. 1981, MNRAS, 194, 809.Google Scholar
Lin, D. N. C., & Murray, S. D. 1992, ApJ, 394, 523.Google Scholar
Lin, D. N. C., & Pringle, J. E. 1987, ApJL, 320, L87.Google Scholar
Low, C., & Lynden-Bell, D. 1976, MNRAS, 176, 367.CrossRefGoogle Scholar
McKee, C. F., & Cowie, L. L. 1977, ApJ, 215, 213.CrossRefGoogle Scholar
Murray, S. D., & Lin, D. N. C. 1989, ApJ, 339, 933.CrossRefGoogle Scholar
Murray, S. D., & Lin, D. N. C. 1990, ApJ, 357, 105.Google Scholar
Murray, S. D., & Lin, D. N. C. 1992, ApJ, 400, 265.CrossRefGoogle Scholar
Murray, S. D., & Lin, D. N. C. 1996, ApJ, 467, 728.Google Scholar
Murray, S. D., White, S. D. M., Blondin, J. M., & Lin, D. N. C. 1993, ApJ, 407, 588.CrossRefGoogle Scholar
Noriega-Crespo, A. Bodenheimer, P. Lin, D. Tenorio-Tagle, G. 1989, MNRAS, 237, 461.Google Scholar
Prosser, C. F. et al. 1994, ApJ, 421, 517.CrossRefGoogle Scholar
Rees, M. J., & Ostriker, J. P. 1977, MNRAS, 179, 541.CrossRefGoogle Scholar
Scalo, J.M. 1985, in Protostars and Planets II , eds. Black, D.C. & Matthews, M., (Univ. of Arizona Press), 201.Google Scholar
Shu, F. 1977, ApJ, 214, 488.Google Scholar
Stetson, P. B. & Harris, W. E. 1988, AJ, 96, 909.Google Scholar
Tenorio-Tagle, G. Bodenheimer, P. Lin, D. Noriega-Crespo, A. 1986, MNRAS, 221, 635.Google Scholar
Wheeler, J. C., Sneden, C., & Truran, J. W. 1989, ARAA, 27, 279.Google Scholar
White, S. D. M., & Rees, M. J. 1978, MNRAS, 183, 341.Google Scholar
Zinnecker, H., McCaughrean, M., & Wilking, B. A. 1993, in Protostars and Planets III , eds. Levy, E. & Lunine, J., (Univ. of Arizona Press), 429.Google Scholar