Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-6pznq Total loading time: 0.448 Render date: 2021-03-06T16:09:30.580Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Extrasolar Planets and Prospects for Terrestrial Planets

Published online by Cambridge University Press:  19 September 2017

Geoffrey W. Marcy
Affiliation:
University of California, Berkeley, Dept. of Astronomy, Berkeley, CA 94720 USA
R. Paul Butler
Affiliation:
Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington DC 20015 USA
Steven S. Vogt
Affiliation:
UCO Lick Observatories, University of California, Santa Cruz, Santa Cruz, CA 95064
Debra A. Fischer
Affiliation:
University of California, Berkeley, Dept. of Astronomy, Berkeley, CA 94720 USA

Abstract

Examination of ∼2000 sun–like stars has revealed 97 planets (as of 2002 Nov), all residing within our Milky Way Galaxy and within ∼200 light years of our Solar System. They have masses between 0.1 and 10 times that of Jupiter, and orbital sizes of 0.05–5 AU. Thus planets occupy the entire detectable domain of mass and orbits. News & summaries about extrasolar planets are provided at: http://exoplanets.org. These planets were all discovered by the wobble of the host stars, induced gravitationally by the planets, causing a periodicity in the measured Doppler effect of the starlight. Earth–mass planets remain undetectable, but space–based missions such as Kepler, COROT and SIM may provide detections of terrestrial planets within the next decade.

The number of planets increases with decreasing planet mass, indicating that nature makes more small planets than jupiter–mass planets. Extrapolation, though speculative, bodes well for an even larger number of earth–mass planets. These observations and the theory of planet formation suggests that single sun–like stars commonly harbor earth–sized rocky planets, as yet undetectable. The number of planets increases with increasing orbital distance from the host star, and most known planets reside in non–circular orbits. Many known planets reside in the habitable zone (albeit being gas giants) and most newly discovered planets orbit beyond 1 AU from their star. A population of Jupiter–like planets may reside at 5–10 AU from stars, not easily detectable at present. The sunlike star 55 Cancri harbors a planet of 4–10 Jupiter masses orbiting at 5.5 AU in a low eccentricity orbit, the first analog of our Jupiter, albeit with two large planets orbiting inward.

To date, 10 multiple–planet systems have been discovered, with four revealing gravitational interactions between the planets in the form of resonances. GJ 876 has two planets with periods of 1 and 2 months. Other planetary systems are “hierarchical”, consisting of widely separated orbits. These two system architectures probably result from gravitational interactions among the planets and between the planets and the proto-planetary disk out of which they formed.

Type
Extrasolar Planets
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Armitage, P. J., Livio, M., Lubow, S. H., & Pringle, J. E. 2002, MNRAS, 334, 248 CrossRefGoogle Scholar
Beckwith, S. V. W., & Sargent, A. I. 1996, Nature, 383, 139 CrossRefGoogle Scholar
Beckwith, S. V. W., Henning, T., & Nakagawa, Y. 2000, in Protostars and Planets IV, ed. Mannings, V., Boss, A., & Russell, S., 533 Google Scholar
Benedict, G. F., et al. 2002, ApJ, 581, L115 CrossRefGoogle Scholar
Boss, A. P. 2000, ApJ, 536, L101 CrossRefGoogle Scholar
Butler, R. P., Marcy, G. W., Williams, E., McCarthy, C., Dosanjh, P., & Vogt, S. S. 1996, PASP, 108, 500 CrossRefGoogle Scholar
Butler, R. P., Marcy, G. W., Williams, E., Hauser, H., & Shirts, P. 1997, ApJ, 474, L115 CrossRefGoogle Scholar
Butler, R. P., et al. 1999, ApJ, 526, 916 CrossRefGoogle Scholar
Butler, R. P., et al. 2002, ApJ, 578, 565 CrossRefGoogle Scholar
Butler, R. P., et al. 2003, ApJ, 582, 455 CrossRefGoogle Scholar
Chiang, E. I., Tabachnik, S., & Tremaine, S. 2001, AJ, 122, 1607 CrossRefGoogle Scholar
Chiang, E. I., Fischer, D. A. & Thommes, E. 2002, ApJ, 564, L105 CrossRefGoogle Scholar
Chiang, E. I., & Murray, N. 2002, ApJ, 576, 473 CrossRefGoogle Scholar
Chiang, E. I. 2003, ApJ, accepted Google Scholar
ESA 1997, The Hipparcos and Tycho Catalogue, ESA SP-1200 Google Scholar
Fischer, D. A., Marcy, G. W., Butler, R. P., Vogt, S. S., & Apps, K. 1999, PASP, 111, 50 CrossRefGoogle Scholar
Fischer, D. A., Marcy, G. W., Butler, R. P., Vogt, S. S., Prink, S., & Apps, K. 2001, ApJ, 551, 1107 CrossRefGoogle Scholar
Fischer, D. A., Marcy, G. W., Butler, R. P., Laughlin, G., & Vogt, S. S. 2002, ApJ, 564, 1028 CrossRefGoogle Scholar
Fischer, D. A., & Valenti, J. 2003, in prep.Google Scholar
Fischer, D. A., et al. 2003, submitted to ApJ Google Scholar
Ford, E. B., Seager, S., & Turner, E. L. 2001, Nature, 412, 885 CrossRefGoogle Scholar
Goldreich, P., & Sari, R. 2003, ApJ, 585, 1024 CrossRefGoogle Scholar
Haisch, K. E. Jr., Lada, E. A., & Lada, C. J. 2001, ApJ, 553, L153 CrossRefGoogle Scholar
Henry, G. W., Baliunas, S. L., Donahue, R. A., Fekel, F. C., & Soon, W. 2000a, ApJ, 531, 415 CrossRefGoogle Scholar
Henry, G. W., Donahue, R. A., & Baliunas, S. L. 2002, ApJ, 577, L111 CrossRefGoogle Scholar
Hillenbrand, L. A., et al. 1998, AJ, 116, 1816 CrossRefGoogle Scholar
Jones, H. R. A., Butler, R. P., Tinney, C. G., Marcy, G. W., Penny, A. J., McCarthy, C., & Carter, B. D. 2003, MNRAS, 341, 948 CrossRefGoogle Scholar
Jorissen, A., Mayor, M., & Udry, S. 2001, A&A, 379, 992 Google Scholar
Laughlin, G., & Chambers, J. E. 2002, in Press, Extrasolar Trojans: The Viability and Detectability of Planets in the 1: 1 Google Scholar
Resonance Lee, M. H., & Peale, S. J. 2002, ApJ, 567, 596 Google Scholar
Lin, D. N. C., & Ida, S. 1997, ApJ, 477, L781 CrossRefGoogle Scholar
Lin, D. N. C., Bodenheimer, P., & Richardson, D. C. 1996, Nature, 380, 606.CrossRefGoogle Scholar
Lissauer, J. J. 1995, Icarus, 114, 217 CrossRefGoogle Scholar
Lissauer, J. J., & Rivera, E. 2001, ApJ, 554, L1141 CrossRefGoogle Scholar
Malhotra, R. 2002, ApJ, 575, L33 CrossRefGoogle Scholar
Marcy, G. W., Butler, R. P., Williams, E., Bildsten, L., Graham, J. R., Ghez, A. M., & Jernigan, J. G. 1997, ApJ, 481, 926 CrossRefGoogle Scholar
Marcy, G. W., & Butler, R. P. 2000, PASP, 112, 137 CrossRefGoogle Scholar
Marcy, G. W., Cochran, W. D., & Mayor, M. 2000, in Protostars and Planets IV, ed. Mannings, V., Boss, A. P. & Russell, S. S. (Tucson: University of Arizona Press), 1285 Google Scholar
Marcy, G. W., et al. 2001, ApJ, 556, 296 CrossRefGoogle Scholar
Marcy, G. W., Butler, R. P., Fischer, D. A., & Vogt, S. S. 2002, ApJ, 581, 1375 CrossRefGoogle Scholar
Marzari, F., & Weidenschilling, S. J. 2002, Icarus, 156, 570 CrossRefGoogle Scholar
Naef, et al. 2001, A&A, 375, L27 Google Scholar
Rivera, E. J. & Lissauer, J. J. 2001, ApJ, 558, 392 CrossRefGoogle Scholar
Rivera, E. J. & Lissauer, J. J. 2002, AAS/Division of Dynam. Astro. Meet., 33 Google Scholar
Rasio, F., & Ford, E. 1996, Science, 274, 954 CrossRefGoogle Scholar
Santos, N. C., et al. 2002, A&A, 392, 215 Google Scholar
Throop, H. B., Bally, J., Esposito, L. W., & McCaughrean, M. J. 2001, Science, 292, 1686 CrossRefGoogle Scholar
Trilling, D., Lunine, J., & Benz, W., 2002, A&A, 394, 241 Google Scholar
Udry, S., et al. 2002, A&A, 390, 267 Google Scholar
Vogt, S. S., Marcy, G. W., Butler, R. P., & Apps, K. 2000, ApJ, 536, 902 CrossRefGoogle Scholar
Webster, Z. T., & Welch, W. J. 2001, in ASP Conf. Series Vol. 244, Young Stars Near Earth: Progress and Prospects, ed. Jayawardhana, R. & Greene, T., (San Francisco: Astronomical Society of the Pacific), 233 Google Scholar
Youdin, A., & Shu, F. 2003, ApJ, accepted Google Scholar
Yu, Q., & Tremaine, S. 2001, AJ, 121, 1736 CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 39 *
View data table for this chart

* Views captured on Cambridge Core between 19th September 2017 - 6th March 2021. This data will be updated every 24 hours.

Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Extrasolar Planets and Prospects for Terrestrial Planets
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Extrasolar Planets and Prospects for Terrestrial Planets
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Extrasolar Planets and Prospects for Terrestrial Planets
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *