Skip to main content Accessibility help
×
Home

Enhancement of Thermonuclear Reaction Rate due to Strong Screening

  • N. Itoh (a1), H. Totsuji (a2), S. Ichimaru (a3) and H.E. DeWitt (a4)

Extract

The enhancement factor for the rate of thermonuclear reactions which involve two kinds of nuclei with charges Zi and Zj in the strong-screening regime is given for general cases of surrounding nuclear plasmas by the formula, exp[1.25Γij −0.095τij(3Γijij)2]. Here, Γij = 2ZiZje2/(ai+aj)T; ai = [3Zi/4πΣkZknk]1/3; τij = [(27π2/4)(2μijZi 2Zj 2e4Th2)]1/3; μij is the reduced mass for the two reacting nuclei Zi and Zj; and nk is the number density of nuclei Zk. The calculation is based on the recent results of Monte Carlo computations for binary ion mixtures, which have shown that the screening functions hij(r) at intermediate distances [0.5 ≤ r/[(ai+aj)/2] ≤ 1.6] can be expressed to a good degree of accuracy by

Application to the calculation of carbon ignition in the carbon-oxygen core of a highly evolved star is discussed. The carbon ignition temperature is found to be single-valued as a function of the density in contrast to the work of Graboske.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Enhancement of Thermonuclear Reaction Rate due to Strong Screening
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Enhancement of Thermonuclear Reaction Rate due to Strong Screening
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Enhancement of Thermonuclear Reaction Rate due to Strong Screening
      Available formats
      ×

Copyright

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed